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Two-Stage Stochastic Programming

Let’s consider the stochastic programming problem:

(SP) maximize
x∈X

E [h(x, ξ)]

x is a vector of decision variables in R
n

ξ is a vector of uncertain parameters in R
d
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Let’s consider the stochastic programming problem:

(SP) maximize
x∈X

E [h(x, ξ)]

x is a vector of decision variables in R
n

ξ is a vector of uncertain parameters in R
d

The profit function h(x, ξ) is the maximum of a linear
program with uncertainty limited to objective

h(x, ξ) := max.
y

cT
1 x + ξTC2y

s.t. Ax + By ≤ b
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Two-Stage Stochastic Programming

Let’s consider the stochastic programming problem:

(SP) maximize
x∈X

E [h(x, ξ)]

x is a vector of decision variables in R
n

ξ is a vector of uncertain parameters in R
d

The profit function h(x, ξ) is the maximum of a linear
program with uncertainty limited to objective

h(x, ξ) := max.
y

cT
1 x + ξTC2y

s.t. Ax + By ≤ b

To find an optimal solution, one must develop a stochastic
model and solve the associated stochastic program
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Difficulty of Developing a Stochastic Model

Developing an accurate stochastic model requires heavy
engineering efforts and might even be impossible:

Expecting that a scenario might occur does not determine
its probability of occurring
Unexpected events (e.g., economic crisis) might occur
The future might actually not behave like the past
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Difficulty of Developing a Stochastic Model

Developing an accurate stochastic model requires heavy
engineering efforts and might even be impossible:

Expecting that a scenario might occur does not determine
its probability of occurring
Unexpected events (e.g., economic crisis) might occur
The future might actually not behave like the past

What if, after all this work, we realize that the solution
only marginally improves performance?

What if, after implementing the SP solution, we realize that
our choice of distribution was wrong?
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A few data-driven approaches

In practice, we often have loads of historical data to inform our
decision. We can consider a number of data-driven approaches:
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A few data-driven approaches

In practice, we often have loads of historical data to inform our
decision. We can consider a number of data-driven approaches:

Mean value problem: estimate E[ξ] and solve

(MVP) maximize
x∈X

h(x,E[ξ]) .
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A few data-driven approaches

In practice, we often have loads of historical data to inform our
decision. We can consider a number of data-driven approaches:

Mean value problem: estimate E[ξ] and solve

(MVP) maximize
x∈X

h(x,E[ξ]) .

Empirical Average Approximation: solve

(EAA) maximize
x∈X

1

M

∑

i

h(x, ξi) .
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A few data-driven approaches

In practice, we often have loads of historical data to inform our
decision. We can consider a number of data-driven approaches:

Mean value problem: estimate E[ξ] and solve

(MVP) maximize
x∈X

h(x,E[ξ]) .

Empirical Average Approximation: solve

(EAA) maximize
x∈X

1

M

∑

i

h(x, ξi) .

Distributionally robust problem: use data to characterize
information about the moments µ,Σ, etc. and solve:

(DRSP) maximize
x∈X

inf
F∈D(µ,Σ,...)

EF[h(x, ξ)] .
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A few data-driven approaches

In practice, we often have loads of historical data to inform our
decision. We can consider a number of data-driven approaches:

Expected value problem

Empirical Average Approximation

Distributionally robust problem

How can we find out if we would
achieve more with a stochastic model
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A few data-driven approaches

In practice, we often have loads of historical data to inform our
decision. We can consider a number of data-driven approaches:

Expected value problem

Empirical Average Approximation

Distributionally robust problem

How can we find out if we would
achieve more with a stochastic model

without developing the stochastic model?
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Distributionally Robust Optimization

Use available information to define a set D, such that F ∈ D,
then consider the distributionally robust stochastic program:

(DRSP) maximize
x∈X

inf
F∈D

EF[h(x, ξ)]
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Distributionally Robust Optimization

Use available information to define a set D, such that F ∈ D,
then consider the distributionally robust stochastic program:

(DRSP) maximize
x∈X

inf
F∈D

EF[h(x, ξ)]

Introduced by H. Scarf in 1958

Generalizes many forms of optimization models
E.g.: stochastic programming, robust optimization, deterministic optimization

Many instances have been shown to be easier to solve than
the associated SP
[Calafiore et al. (2006), Delage et al. (2010), Chen et al. (2010)]
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Finite sample guarantees for a DRSP

Theorem (Delage & Ye, 2010)

If the data is i.i.d., then the solution to the DRSP under the
uncertainty set

D(γ) =






F

∣
∣
∣
∣
∣
∣

P(ξ ∈ S) = 1
‖E [ξ]− µ̂‖2

Σ̂−1/2
≤ γ1

E [(ξ − µ̂)(ξ − µ̂)T] � (1 + γ2)Σ̂







with γ1 = O
(

log(1/δ)
M

)

and γ2 = O

(√
log(1/δ)

M

)

, achieves an

expected performance that is guaranteed, with prob. greater than
1 − δ, to be better than the optimized value of the DRSP problem.
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Value of MVP solution under Bounded Moments

Theorem (Delage, Arroyo & Ye, 2013)

Given that the stochastic program is risk neutral, the solution to the
MVP is optimal with respect to

maximize
x∈X

inf
F∈D(S,µ̂,Σ̂)

EF[h(x, ξ)] ,

where

D(S, µ̂, Σ̂) =






F

∣
∣
∣
∣
∣
∣

P(ξ ∈ S) = 1
‖E [ξ]− µ̂‖2

Σ̂−1/2 ≤ 0

E [(ξ − µ̂)(ξ − µ̂)T] � (1 + γ2)Σ̂
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Finite sample guarantees for Robust MVP

Corollary

If the data is i.i.d., then the solution to the Robust MVP

maximize
x∈X

min
µ:‖Σ̂−1/2(µ−µ̂)‖2≤γ1

h(x,µ) .

with γ1 = O
(

log(1/δ)
M

)

achieves an expected performance that is

guaranteed, with prob. greater than 1 − δ, to be better than the
optimized value of the Robust MVP problem.
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Inferring structure from data

In practice, we often know something about the structure of ξ

Factor model: ξ = c + Aε with ε ∈ R
d′ , d′ << d

Autoregressive-moving-average (ARMA) model:

ξt = c +

p
∑

j=1

ψjξt−i ++εt

q
∑

j=1

θiεt−i with εt i.i.d.

Autoregressive Conditional Heteroskedasticity (ARCH)

ξt = ct + σtεt, σt = α0 +

q
∑

j=1

αj(σt−jεt−j)
2 with εt i.i.d.

Do we need to make distribution assumptions to calibrate
these models ?
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Generalized method of moments [A.R. Hall (2005)]

Suppose that the structure is ξt = εt + θεt−1, with εt i.i.d. with
mean µ and σ

Regardless of the distribution of ε, we know that

E[ξt] = (1 + θ)µ

E[ξtξt−1] = E[(εt + θεt−1)(εt−1 + θεt−2)]

= µ2 + θµ2 + θ(µ2 + σ2) + θ2µ2 = (1 + θ)2µ2 + θσ2

E[ξ2
t ] = (1 + θ)2µ2 + (1 + θ2)σ2

Use empirical moments to fit the parameters (θ, µ, σ)

Retrieve the moments for ξ

13 Delage et al. Value of Stochastic Modeling
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Quality of GMM estimation

Empirical evaluation of quality of covariance estimation using
GMM versus Gaussian likelihood maximization when true
distribution is log-normal

10
0

10
5

10
10

10
15

−40

−20

0

20

40

60

80

100

Distribution’s excess kurtosis

E
st

im
at

io
n 

im
pr

ov
em

en
t w

ith
 G

M
M

 (
%

)

 

 

θ=0
θ = σ
θ=10σ

14 Delage et al. Value of Stochastic Modeling



Introduction Value of Moment Based Approaches Value of Stochastic Modeling Fleet Mix Optimization Conclusion

Outline

1 Introduction

2 Value of Moment Based Approaches

3 Value of Stochastic Modeling

4 Fleet Mix Optimization

5 Conclusion

15 Delage et al. Value of Stochastic Modeling



Introduction Value of Moment Based Approaches Value of Stochastic Modeling Fleet Mix Optimization Conclusion

What is the Value of Stochastic Modeling?

Consider the following steps:

1 Construct D such that F ∈ D with high confidence

2 Find candidate solution using data-driven approach
3 Is it worth developing a stochastic model?

(a) If yes, then develop a model & solve SP
(b) Otherwise, implement candidate solution
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What is the Value of Stochastic Modeling?

Consider the following steps:

1 Construct D such that F ∈ D with high confidence

2 Find candidate solution using data-driven approach
3 Is it worth developing a stochastic model?

(a) If yes, then develop a model & solve SP
(b) Otherwise, implement candidate solution

Worst-case regret of a candidate solution gives an optimistic
estimate of the value of obtaining perfect information about F.

R(x1) := sup
F∈D

{

max
x2

EF[h(x2, ξ)]− EF[h(x1, ξ)]

}
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What is the Value of Stochastic Modeling?

Consider the following steps:

1 Construct D such that F ∈ D with high confidence

2 Find candidate solution using data-driven approach
3 Is it worth developing a stochastic model?

(a) If yes, then develop a model & solve SP
(b) Otherwise, implement candidate solution

Worst-case regret of a candidate solution gives an optimistic
estimate of the value of obtaining perfect information about F.

R(x1) := sup
F∈D

{

max
x2

EF[h(x2, ξ)]− EF[h(x1, ξ)]

}

Theorem (Delage, Arroyo & Ye, 2013)

Evaluating the worst-case regret R(x1) exactly is NP-hard in general.
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Bounding the Worst-case Regret

Theorem (Delage, Arroyo & Ye, 2013)

If S ⊆ {ξ | ‖ξ‖1 ≤ ρ} and ‖EF[ξ]− µ̂‖2
Σ̂−1/2 ≤ γ1, then an upper

bound can be evaluated

UB(x1, ȳ1) := min
s,q

s + µ̂Tq +
√
γ1‖Σ̂1/2q‖

s.t. s ≥ α(ρei)− ρeT
i q , ∀ i ∈ {1, ..., d}

s ≥ α(−ρei) + ρeT
i q , ∀ i ∈ {1, ..., d} ,

where α(ξ) = maxx2 h(x2, ξ)− h(x1, ξ; ȳ1).
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Value of Stochastic Modeling for an Airline Company

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
passenger demand, fuel prices, etc.

Yet, many airline companies sign these contracts based on
a single scenario of what the future may be.

19 Delage et al. Value of Stochastic Modeling



Introduction Value of Moment Based Approaches Value of Stochastic Modeling Fleet Mix Optimization Conclusion

Value of Stochastic Modeling for an Airline Company

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
passenger demand, fuel prices, etc.

Yet, many airline companies sign these contracts based on
a single scenario of what the future may be.

Now we know that since little is known about these
uncertain factors, using the data-driven forecast of
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Value of Stochastic Modeling for an Airline Company

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
passenger demand, fuel prices, etc.

Yet, many airline companies sign these contracts based on
a single scenario of what the future may be.

Now we know that since little is known about these
uncertain factors, using the data-driven forecast of
expected value of parameters can be considered a robust
approach

Can we do better by developing a stochastic model ?
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Mathematical Formulation for Fleet Mix Optimization

The fleet composition problem is a stochastic mixed integer LP

maximize
x

E [− oTx
︸︷︷︸

ownership cost

+ h(x, p̃, c̃, L̃)
︸ ︷︷ ︸

future profits

] ,
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Mathematical Formulation for Fleet Mix Optimization

The fleet composition problem is a stochastic mixed integer LP

maximize
x

E [− oTx
︸︷︷︸

ownership cost

+ h(x, p̃, c̃, L̃)
︸ ︷︷ ︸

future profits

] ,

with h(x, p̃, c̃, L̃) :=

max
z≥0,y≥0,w

∑

k

(
∑

i

flight profit
︷︸︸︷

p̃k
i wk

i −
rental cost

︷ ︸︸ ︷

c̃k(zk − xk)
+ +

lease revenue
︷ ︸︸ ︷

L̃k(xk − zk)
+ )

s.t. wk
i ∈ {0, 1} , ∀ k, ∀ i &

∑

k

wk
i = 1 , ∀ i } Cover

yk
g∈in(v) +

∑

i∈arr(v)

wk
i = yk

g∈out(v) +
∑

i∈dep(v)

wk
i , ∀ k, ∀ v } Balance

zk =
∑

v∈{v|time(v)=0}

(yk
g∈in(v) +

∑

i∈arr(v)

wk
i ) , ∀k } Count

20 Delage et al. Value of Stochastic Modeling



Introduction Value of Moment Based Approaches Value of Stochastic Modeling Fleet Mix Optimization Conclusion

Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights, σp̃i
/µp̃i

∈ [4%, 53%]

2 4 types of aircrafts, 240 flights, σp̃i
/µp̃i

∈ [2%, 20%]

3 13 types of aircrafts, 535 flights, σp̃i
/µp̃i

∈ [2%, 58%]
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3 13 types of aircrafts, 535 flights, σp̃i
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∈ [2%, 58%]

Results:

Test cases Worst-case regret
for MVP solution

#1 ≤ 6%
#2 ≤ 1%
#3 ≤ 7%

21 Delage et al. Value of Stochastic Modeling



Introduction Value of Moment Based Approaches Value of Stochastic Modeling Fleet Mix Optimization Conclusion

Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights, σp̃i
/µp̃i

∈ [4%, 53%]

2 4 types of aircrafts, 240 flights, σp̃i
/µp̃i

∈ [2%, 20%]

3 13 types of aircrafts, 535 flights, σp̃i
/µp̃i

∈ [2%, 58%]

Results:

Test cases Worst-case regret
for MVP solution

#1 ≤ 6%
#2 ≤ 1%
#3 ≤ 7%

Conclusions:

It’s wasteful to invest more than 7% of profits in stochastic
modeling
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Conclusion

A lot can be done with data before developing a stochastic
model

A distributionally robust model formulated using the data
can provide useful guarantees
In some circumstances, the MVP model provides a
distributionally robust solution
It is possible to calibrate a structural model using GMM
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Conclusion

A lot can be done with data before developing a stochastic
model

A distributionally robust model formulated using the data
can provide useful guarantees
In some circumstances, the MVP model provides a
distributionally robust solution
It is possible to calibrate a structural model using GMM

One can estimate how much might be gained with a
stochastic model

In some cases, using the data itself might be good enough

23 Delage et al. Value of Stochastic Modeling
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Questions & Comments ...

... Thank you!
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