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◮ Since last financial crisis, there are no more “best practice”
measures of risk

◮ Variance assumes symmetric distribution and considers all
random variables as risky, even positive ones

◮ VaR ignores what happens in the tail of distributions and
does not encourage diversification of risks

◮ While the axioms proposed by Artzner et al. (1999)
provide good guidance, it is never easy to choose which
specific measure to use

◮ We propose a framework for accounting precisely for what
is known of the risk preferences of a decision maker when
optimizing financial positions
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RISK MINIMIZATION

Z = ξTx : the return of a financial portfolio composed by a
wealth allocation vector x and securities with risky returns ξ.

The goal is to solve

minimize
x∈X

ρ(Z(x, ξ))

s.t. E [Z(x, ξ)] ≥ r̄ ,

where ρ(·) is a risk measure and ρ(Z1) ≥ ρ(Z2) means portfolio
Z1 is perceived at least as risky as Z2.
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The goal is to solve

minimize
x∈X

ρ(Z(x, ξ))

s.t. E [Z(x, ξ)] ≥ r̄ ,

where ρ(·) is a risk measure and ρ(Z1) ≥ ρ(Z2) means portfolio
Z1 is perceived at least as risky as Z2.

Which one and why?

◮ Variance: ρ(Z) = E [(Z − E[Z])2] : Markowitz (1952)

◮ CVaR : ρ(Z) = −1 · E [Z|Z ≤ Z10%] : Rockafellar and
Uryasev (2000)
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AXIOMS OF RISK MEASURES

Convex risk measures (based on diversification principle)
satisfy:

1. Monotonicity : if X1 ≥ X2 then ρ(X1) ≤ ρ(X2);

2. Translation Invariance : if c ∈ ℜ, then
ρ(X1 + c) = ρ(X1)− c,

3. Convexity :
ρ(λX1 + (1 − λ)X2) ≤ λρ(X1) + (1 − λ)ρ(X2) ∀ λ ∈ [0, 1].
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AXIOMS OF RISK MEASURES

Decision maker’s risk measure satisfies :

1. Monotonicity : if X1 ≥ X2 then ρ(X1) ≤ ρ(X2);

2. Translation Invariance : if c ∈ ℜ, then
ρ(X1 + c) = ρ(X1)− c,

3. Convexity :
ρ(λX1 + (1 − λ)X2) ≤ λρ(X1) + (1 − λ)ρ(X2) ∀ λ ∈ [0, 1].

4. Positive homogeneity ??? : ρ(λX) = λρ(X), λ ≥ 0

5. Law invariance ??? : if Zi ∼ Fi, Zj ∼ Fj and Fi = Fj, then
ρ(Zi) = ρ(Zj)
i.e. Risk only depends on distribution

6. What else ???

... We can ask or observe the DM.
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1. Q1 : X1? � X3 A1 : Monotonicity ⇒ ρ(X1) ≥ ρ(X3)

2. Q2 : X1? � X2 A2 :??(we can learn from the DM)
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WHAT WE KNOW ABOUT ρ

1. Monotonicity

2. Translation Invariance

3. Convexity

4. Positive homogeneity

5. Law invariance

6. Elicitation Results : {ρ(Xj) ≤ ρ(Xk)}(j,k)∈I

Back to the problem :

min
x∈X

ρ(Z(x, ξ))

Question : How should we choose the portfolio x when only

the above information about ρ is known ?
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ROBUST OPTIMIZATION FORMULATION

We propose the following minmax formulation

min
x∈X

sup
ρ∈R

ρ(Z(x, ξ)),

where R := {ρ | ρ satisfies a subset of (1) to (6)}

1. Monotonicity

2. Translation Invariance

3. Convexity

4. Positive homogeneity

5. Law invariance

6. Elicitation Results : {ρ(Xj) ≤ ρ(Xk)}(j,k)∈I
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THE ROBUST MEASURE AND OPTIMIZATION

Fact 1 :
If ρ is a convex/coherent/law inv. risk measure, then
ρ′ = supρ∈R ρ is also a convex/coherent/law inv. risk measure.

Fact 2 :
Assuming that

◮ Set X is convex

◮ Random vector ξ has N possible outcomes

then the risk vs. return optimization problem is a convex
optimization problem that can be solved in polynomial time.
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ROBUST CONVEX RISK MEASURE

Let’s consider the problem

minimize
x∈X

sup
ρ∈R1

ρ(Z(x, ξ)) ,

where R1 := {ρ | ρ satisfies conditions (1), (2), (3), and (6)}

1. Monotonicity

2. Translation Invariance

3. Convexity

4. Positive homogenity

5. Law invariance

6. Elicitation Results :{ρ(Xj) ≤ ρ(Xk)}(j,k)∈I
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ROBUST CONVEX RISK MEASURE

The optimization problem can be equivalently formulated as
the following finite dimensional convex optimization problem

(P) min
x∈X ,t,θ

t

s.t. Z(x, ξi) + t ≥ [X1(ξi) · · ·Xm(ξi)]θ + δ∗⊤θ, ∀ i = 1, ...,N

1⊤θ = 1, θ ≥ 0 ,

where δ∗ is the optimal solution of

max
δ,λ

∑

i

δi

s.t. δj ≤ δk, ∀ (j, k) ∈ I

δj ≥ δi − λ⊤
i (Xj − Xi), ∀ i, j

1Tλ = 1 & λi ≥ 0, ∀ i
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sets (Föllmer and Schied 2002)

ρA(Z) := inf
t∈ℜ

{t | Z + t ∈ A}.
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OUTLINE OF THE REFORMULATION PROCEDURE

We reformulate the problem from the perspective of acceptance
sets (Föllmer and Schied 2002)

ρA(Z) := inf
t∈ℜ

{t | Z + t ∈ A}.

Our goal is to characterize the worst-case set A∗ for a risk
profile Z

sup
A∈A

ρA(Z),

where A :=

{

A

∣

∣

∣

∣

ρA = convex risk measure
ρA(Xj) ≤ ρA(Xk), ∀ (j, k) ∈ I

}

denotes a set

of acceptance sets that are consistent with given information.
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OUTLINE OF THE REFORMULATION PROCEDURE

We prove that the worst-case measure satisfies for all Z:

sup
A∈A

ρA(Z) = sup
δ∈∆

sup
A∈A(δ)

ρA(Z)

where

A(δ) :=

{

A

∣

∣

∣

∣

ρA = convex risk measure
ρA(Xi) = δi, ∀ i

}

and
∆ = {δ ∈ ℜm | A(δ) 6= ∅ & δj ≤ δk, ∀ (j, k) ∈ I}
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OUTLINE OF THE REFORMULATION PROCEDURE

We prove that the worst-case measure satisfies for all Z:

sup
A∈A

ρA(Z) = sup
δ∈∆

ρH(δ)(Z) = ρH(δ∗)(Z)

where H(δ) is a convex polyhedron with the points {Xi + δi} as
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DETAILS OF EXPERIMENTS

We consider a static portfolio optimization problem with 4
assets over a period of one week

min
x≥0,1⊤x=1

ρ(RTx)

We simulate a decision maker’s true risk attitude using the
following unknown law inv. coherent risk measure

ρ := 0.1 · CVaR20% + 0.9 · CVaR95%.
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DETAILS OF EXPERIMENTS

Use historical data about weekly returns of 14 assets from July
2007 to June 2012.

◮ On any given week, last 13 weeks’ returns constitute the
outcome space

◮ For elicitation, we use a number of 13 weeks risk profiles
from 2007 and 2008

◮ We report on 4000 experiments. For each one:
◮ We randomly draw a date between 2009 and 2012
◮ We randomly draw 4 assets for portfolio optimization
◮ Performance of obtained portfolios is measured using true

risk measure
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NUMERICAL RESULTS
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CONCLUSION

◮ Assuming a particular form of CVaR can be misleading,
one can instead use an ambiguity averse risk measure
formulation

◮ Impact of information about global attitude is significant
but can be replaced with information about risk profiles

◮ The measures that account for law invariance can achieve
nearly optimal performance with a small amount of
additional information
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CONCLUSION

◮ Assuming a particular form of CVaR can be misleading,
one can instead use an ambiguity averse risk measure
formulation

◮ Impact of information about global attitude is significant
but can be replaced with information about risk profiles

◮ The measures that account for law invariance can achieve
nearly optimal performance with a small amount of
additional information

◮ In Armbruster and Delage (2012), we develop a similar
framework but for expected utility theory
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