BACKGROUNI

Methodology 0000000 EXPERIMENTS 0000

Accounting for Risk Measure Ambiguity when Optimizing Financial Positions

Erick Delage, Jonathan Y. Li

Tuesday, 9th of July, 2013 ICSP 2013, Bergamo

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	Background	Methodology	Experiments
	00000000	0000000	0000

INTRODUCTION

- Since last financial crisis, there are no more "best practice" measures of risk
 - Variance assumes symmetric distribution and considers all random variables as risky, even positive ones
 - VaR ignores what happens in the tail of distributions and does not encourage diversification of risks

INTRODUCTION	Background 00000000	Methodology 0000000	Experiments 0000

INTRODUCTION

- Since last financial crisis, there are no more "best practice" measures of risk
 - Variance assumes symmetric distribution and considers all random variables as risky, even positive ones
 - VaR ignores what happens in the tail of distributions and does not encourage diversification of risks
- While the axioms proposed by Artzner et al. (1999) provide good guidance, it is never easy to choose which specific measure to use

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	0000

INTRODUCTION

- Since last financial crisis, there are no more "best practice" measures of risk
 - Variance assumes symmetric distribution and considers all random variables as risky, even positive ones
 - VaR ignores what happens in the tail of distributions and does not encourage diversification of risks
- While the axioms proposed by Artzner et al. (1999) provide good guidance, it is never easy to choose which specific measure to use
- We propose a framework for accounting precisely for what is known of the risk preferences of a decision maker when optimizing financial positions

Methodology 00000000

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND Minimizing Risk Axioms of Risk Measures Preference Elicitation

METHODOLOGY Robust Optimization Robust Convex Risk Measure

EXPERIMENTS Details of experiments Numerical Results Conclusion

Methodology 0000000 EXPERIMENTS 0000

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注一

500

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND Minimizing Risk Axioms of Risk Measures Preference Elicitation

Methodology

EXPERIMENTS

RISK MINIMIZATION

 $Z = \xi^{\mathsf{T}} x$: the return of a financial portfolio composed by a wealth allocation vector *x* and securities with risky returns ξ .

The goal is to solve

$$\begin{array}{ll} \underset{x \in \mathcal{X}}{\text{minimize}} & \rho(Z(x,\xi)) \\ s.t. & \mathbb{E}\left[Z(x,\xi)\right] \geq \bar{r} \ , \end{array}$$

where $\rho(\cdot)$ is a risk measure and $\rho(Z_1) \ge \rho(Z_2)$ means portfolio Z_1 is perceived at least as risky as Z_2 .

RISK MINIMIZATION

 $Z = \xi^{\mathsf{T}} x$: the return of a financial portfolio composed by a wealth allocation vector *x* and securities with risky returns ξ .

The goal is to solve

$$\begin{array}{ll} \underset{x \in \mathcal{X}}{\text{minimize}} & \rho(Z(x,\xi)) \\ s.t. & \mathbb{E}\left[Z(x,\xi)\right] \geq \bar{r} \ , \end{array}$$

where $\rho(\cdot)$ is a risk measure and $\rho(Z_1) \ge \rho(Z_2)$ means portfolio Z_1 is perceived at least as risky as Z_2 .

Popular instances:

- ► Variance: $\rho(Z) = \mathbb{E}[(Z \mathbb{E}[Z])^2]$: Markowitz (1952)
- ► **CVaR** : $\rho(Z) = -1 \cdot \mathbb{E} [Z | Z \le Z_{10\%}]$: Rockafellar and Uryasev (2000)

RISK MINIMIZATION

 $Z = \xi^{\mathsf{T}} x$: the return of a financial portfolio composed by a wealth allocation vector *x* and securities with risky returns ξ .

The goal is to solve

$$\begin{array}{ll} \underset{x \in \mathcal{X}}{\text{minimize}} & \rho(Z(x,\xi)) \\ s.t. & \mathbb{E}\left[Z(x,\xi)\right] \geq \bar{r} \ , \end{array}$$

where $\rho(\cdot)$ is a risk measure and $\rho(Z_1) \ge \rho(Z_2)$ means portfolio Z_1 is perceived at least as risky as Z_2 .

Which one and why?

- Variance: $\rho(Z) = \mathbb{E}[(Z \mathbb{E}[Z])^2]$: Markowitz (1952)
- ► **CVaR** : $\rho(Z) = -1 \cdot \mathbb{E} [Z|Z \le Z_{10\%}]$: Rockafellar and Uryasev (2000)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AXIOMS OF RISK MEASURES

Convex risk measures (based on diversification principle) satisfy:

- 1. Monotonicity : if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$;
- 2. Translation Invariance : if $c \in \Re$, then $\rho(X_1 + c) = \rho(X_1) c$,
- 3. Convexity:

 $\rho(\lambda X_1 + (1-\lambda)X_2) \le \lambda \rho(X_1) + (1-\lambda)\rho(X_2) \; \forall \; \lambda \in [0,1].$

AXIOMS OF RISK MEASURES

Coherent risk measures (e.g. CVaR) satisfy:

- 1. Monotonicity : if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$;
- 2. Translation Invariance : if $c \in \Re$, then $\rho(X_1 + c) = \rho(X_1) c$,
- 3. Convexity:

 $\rho(\lambda X_1 + (1-\lambda)X_2) \le \lambda \rho(X_1) + (1-\lambda)\rho(X_2) \; \forall \; \lambda \in [0,1].$

4. **Positive homogeneity :** $\rho(\lambda X) = \lambda \rho(X), \ \lambda \ge 0$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Methodology 0000000 EXPERIMENTS 0000

AXIOMS OF RISK MEASURES

CVaR satisfies :

AXIOMS OF RISK MEASURES

CVaR satisfies :

- 1. Monotonicity : if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$;
- 2. Translation Invariance : if $c \in \Re$, then $\rho(X_1 + c) = \rho(X_1) c$,
- 3. Convexity : $\rho(\lambda X_1 + (1 - \lambda)X_2) \le \lambda \rho(X_1) + (1 - \lambda)\rho(X_2) \forall \lambda \in [0, 1].$
- 4. **Positive homogeneity** : $\rho(\lambda X) = \lambda \rho(X), \ \lambda \ge 0$
- 5. Law invariance : if $Z_i \sim F_i$, $Z_j \sim F_j$ and $F_i = F_j$, then $\rho(Z_i) = \rho(Z_j)$ i.e. Risk only depends on distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AXIOMS OF RISK MEASURES

Decision maker's risk measure satisfies :

- 1. Monotonicity : if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$;
- 2. Translation Invariance : if $c \in \Re$, then $\rho(X_1 + c) = \rho(X_1) c$,
- 3. Convexity : $\rho(\lambda X_1 + (1 - \lambda)X_2) \le \lambda \rho(X_1) + (1 - \lambda)\rho(X_2) \ \forall \ \lambda \in [0, 1].$
- 4. Positive homogeneity ??? : $\rho(\lambda X) = \lambda \rho(X), \ \lambda \ge 0$
- 5. Law invariance ??? : if $Z_i \sim F_i$, $Z_j \sim F_j$ and $F_i = F_j$, then $\rho(Z_i) = \rho(Z_j)$ i.e. Risk only depends on distribution

AXIOMS OF RISK MEASURES

Decision maker's risk measure satisfies :

- 1. Monotonicity : if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$;
- 2. Translation Invariance : if $c \in \Re$, then $\rho(X_1 + c) = \rho(X_1) c$,
- 3. Convexity : $\rho(\lambda X_1 + (1 - \lambda)X_2) \le \lambda \rho(X_1) + (1 - \lambda)\rho(X_2) \ \forall \ \lambda \in [0, 1].$
- 4. Positive homogeneity ??? : $\rho(\lambda X) = \lambda \rho(X), \ \lambda \ge 0$
- 5. Law invariance ??? : if $Z_i \sim F_i$, $Z_j \sim F_j$ and $F_i = F_j$, then $\rho(Z_i) = \rho(Z_j)$ i.e. Risk only depends on distribution
- 6. What else ???

AXIOMS OF RISK MEASURES

Decision maker's risk measure satisfies :

- 1. Monotonicity : if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$;
- 2. Translation Invariance : if $c \in \Re$, then $\rho(X_1 + c) = \rho(X_1) c$,
- 3. Convexity : $\rho(\lambda X_1 + (1 - \lambda)X_2) \le \lambda \rho(X_1) + (1 - \lambda)\rho(X_2) \ \forall \ \lambda \in [0, 1].$
- 4. Positive homogeneity ??? : $\rho(\lambda X) = \lambda \rho(X), \ \lambda \ge 0$
- 5. Law invariance ??? : if $Z_i \sim F_i$, $Z_j \sim F_j$ and $F_i = F_j$, then $\rho(Z_i) = \rho(Z_j)$ i.e. Risk only depends on distribution
- 6. What else ???

... We can ask or observe the DM.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methodology 0000000 EXPERIMENTS 0000

PREFERENCE ELICITATION

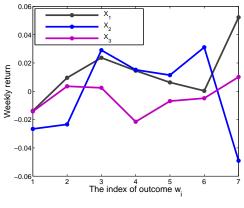
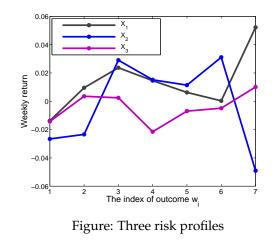


Figure: Three risk profiles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Methodology 0000000 EXPERIMENTS 0000

PREFERENCE ELICITATION

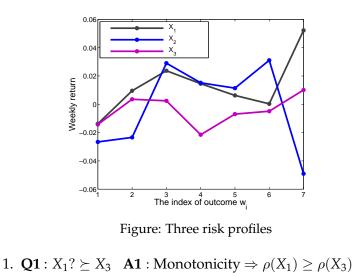


1. **Q1** : X_1 ? $\succeq X_3$

Methodology 0000000 EXPERIMENTS 0000

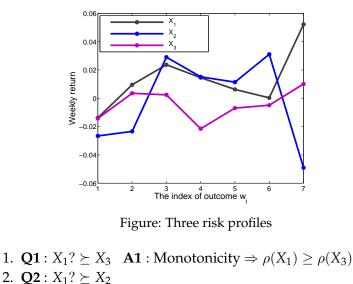
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PREFERENCE ELICITATION



Methodology 0000000 EXPERIMENTS 0000

PREFERENCE ELICITATION

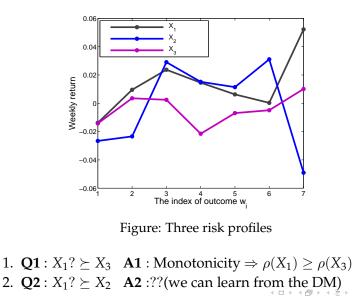


< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Methodology 0000000 EXPERIMENTS 0000

Sac

PREFERENCE ELICITATION



What we know about ρ

- 1. Monotonicity
- 2. Translation Invariance
- 3. Convexity
- 4. Positive homogeneity
- 5. Law invariance
- 6. Elicitation Results : $\{\rho(X_j) \le \rho(X_k)\}_{(j,k) \in \mathcal{I}}$

Back to the problem :

$$\min_{x\in\mathcal{X}}\rho(Z(x,\xi))$$

Question : How should we choose the portfolio *x* when only the above information about ρ is known ?

METHODOLOGY

EXPERIMENTS 0000

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND

METHODOLOGY Robust Optimization Robust Convex Risk Measure

EXPERIMENTS

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	0000

ROBUST OPTIMIZATION FORMULATION

We propose the following minmax formulation

 $\min_{x \in \mathcal{X}} \sup_{\rho \in \mathcal{R}} \rho(Z(x,\xi)),$

where $\mathcal{R} := \{ \rho \mid \rho \text{ satisfies a subset of (1) to (6)} \}$

- 1. Monotonicity
- 2. Translation Invariance
- 3. Convexity
- 4. Positive homogeneity
- 5. Law invariance
- 6. Elicitation Results : $\{\rho(X_j) \le \rho(X_k)\}_{(j,k) \in \mathcal{I}}$

INTRODUCTION	BACKGROUND	METHODOLOGY	EXPERIMENTS
	0000000	0000000	0000

THE ROBUST MEASURE AND OPTIMIZATION

INTRODUCTION	Background	METHODOLOGY	EXPERIMENTS
	0000000	0000000	0000

THE ROBUST MEASURE AND OPTIMIZATION

<u>Fact 1</u> : If ρ is a convex/coherent/law inv. risk measure, then $\rho' = \sup_{\rho \in \mathcal{R}} \rho$ is also a convex/coherent/law inv. risk measure.

THE ROBUST MEASURE AND OPTIMIZATION

<u>Fact 1</u> : If ρ is a convex/coherent/law inv. risk measure, then $\rho' = \sup_{\rho \in \mathcal{R}} \rho$ is also a convex/coherent/law inv. risk measure.

<u>Fact 2</u>: Assuming that

- Set \mathcal{X} is convex
- Random vector ξ has N possible outcomes

then the risk vs. return optimization problem is a convex optimization problem that can be solved in polynomial time.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	Background	METHODOLOGY	EXPERIMENTS
	0000000	000000	0000

ROBUST CONVEX RISK MEASURE

Let's consider the problem

 $\underset{x \in \mathcal{X}}{\text{minimize}} \quad \sup_{\rho \in \mathcal{R}_1} \rho(Z(x,\xi)) \ ,$

where $\mathcal{R}_1 := \{ \rho \mid \rho \text{ satisfies conditions (1), (2), (3), and (6)} \}$

- 1. Monotonicity
- 2. Translation Invariance
- 3. Convexity
- 4. Positive homogenity
- 5. Law invariance
- 6. Elicitation Results : $\{\rho(X_j) \le \rho(X_k)\}_{(j,k) \in \mathcal{I}}$

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	0000

ROBUST CONVEX RISK MEASURE

The optimization problem can be equivalently formulated as the following finite dimensional convex optimization problem

$$(P) \min_{x \in \mathcal{X}, t, \theta} t$$

s.t.
$$Z(x, \xi_i) + t \ge [X_1(\xi_i) \cdots X_m(\xi_i)]\theta + {\delta^*}^\top \theta, \ \forall i = 1, ..., N$$
$$\mathbf{1}^\top \theta = 1, \ \theta \ge 0,$$

where δ^* is the optimal solution of

$$\begin{split} \max_{\delta,\lambda} & \sum_{i} \delta_{i} \\ s.t. & \delta_{j} \leq \delta_{k}, \ \forall \left(j,k\right) \in \mathcal{I} \\ & \delta_{j} \geq \delta_{i} - \lambda_{i}^{\top}(X_{j} - X_{i}), \ \forall i,j \\ & \mathbf{1}^{T}\lambda = 1 \ \& \ \lambda_{i} \geq 0, \ \forall i \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	0000

We reformulate the problem from the perspective of acceptance sets (Föllmer and Schied 2002)

$$\rho_{\mathcal{A}}(Z) := \inf_{t \in \Re} \{ t \mid Z + t \in \mathcal{A} \}.$$

We reformulate the problem from the perspective of acceptance sets (Föllmer and Schied 2002)

$$\rho_{\mathcal{A}}(Z) := \inf_{t \in \Re} \{ t \mid Z + t \in \mathcal{A} \}.$$

Our goal is to characterize the **worst-case** set \mathcal{A}^* for a risk profile *Z*

 $\sup_{\mathcal{A}\in\mathbb{A}}\rho_{\mathcal{A}}(Z),$

where $\mathbb{A} := \left\{ \mathcal{A} \middle| \begin{array}{c} \rho_{\mathcal{A}} = \text{convex risk measure} \\ \rho_{\mathcal{A}}(X_j) \leq \rho_{\mathcal{A}}(X_k), \ \forall (j,k) \in \mathcal{I} \end{array} \right\}$ denotes a set of acceptance sets that are consistent with given information.

INTRODUCTION	Background	METHODOLOGY	EXPERIMENTS
	0000000	00000000	0000

We prove that the worst-case measure satisfies for all *Z*:

$$\sup_{\mathcal{A} \in \mathbb{A}} \rho_{\mathcal{A}}(Z) = \sup_{\delta \in \Delta} \sup_{\mathcal{A} \in \mathbb{A}(\delta)} \rho_{\mathcal{A}}(Z)$$

where

$$\mathbb{A}(\delta) := \begin{cases} \mathcal{A} \middle| \begin{array}{c} \rho_{\mathcal{A}} = \text{convex risk measure} \\ \rho_{\mathcal{A}}(X_i) = \delta_i, \ \forall i \end{cases}$$

and

$$\Delta = \{ \delta \in \Re^m \mid \mathbb{A}(\delta) \neq \emptyset \& \delta_j \le \delta_k, \ \forall (j,k) \in \mathcal{I} \}$$

・ロト・(型ト・(ヨト・(ヨト・(ロト

We prove that the worst-case measure satisfies for all *Z*:

$$\sup_{\mathcal{A} \in \mathbb{A}} \rho_{\mathcal{A}}(Z) = \sup_{\delta \in \Delta} \sup_{\mathcal{A} \in \mathbb{A}(\delta)} \rho_{\mathcal{A}}(Z) = \sup_{\delta \in \Delta} \rho_{\mathcal{H}(\delta)}(Z)$$

where

$$\Delta = \{ \delta \in \Re^m \mid \mathbb{A}(\delta) \neq \emptyset \& \delta_j \le \delta_k, \ \forall (j,k) \in \mathcal{I} \}$$

and $\mathcal{H}(\delta)$ is a convex polyhedron with the points $\{X_i + \delta_i\}$ as vertices

$$\mathcal{H}(\delta) = \left\{ y \in \Re^N \mid \exists \theta \in \Re^m, \ \frac{y \ge [X_1 \ X_2 \ \cdots \ X_m]\theta + \delta^T \theta}{\mathbf{1}^\top \theta = 1} , \ \theta \ge 0 \right\}$$

00000000 00 00000 00000 0000	NTS

We prove that the worst-case measure satisfies for all *Z*:

$$\sup_{\mathcal{A} \in \mathbb{A}} \rho_{\mathcal{A}}(Z) = \sup_{\delta \in \Delta} \rho_{\mathcal{H}(\delta)}(Z) = \rho_{\mathcal{H}(\delta^*)}(Z)$$

where $\mathcal{H}(\delta)$ is a convex polyhedron with the points $\{X_i + \delta_i\}$ as vertices

$$\mathcal{H}(\delta) = \left\{ y \in \Re^N \mid \exists \theta \in \Re^m, \ \frac{y \ge [X_1 \ X_2 \ \cdots \ X_m]\theta + \delta^T \theta}{\mathbf{1}^\top \theta = 1} \right\}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Methodology 00000000 EXPERIMENTS

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注一

990

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND

METHODOLOGY

EXPERIMENTS Details of experiments Numerical Results Conclusion

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	0 00

DETAILS OF EXPERIMENTS

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

 $\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	000

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

$$\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We compare

• Optimize knowing the true risk measure

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	000

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

$$\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Optimize knowing the true risk measure
- ► Optimize assuming CVaR-20% or CVaR-95%

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	000

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

$$\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Optimize knowing the true risk measure
- ► Optimize assuming CVaR-20% or CVaR-95%
- Optimize assuming Convex Risk Measure

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	000

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

$$\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$$

- Optimize knowing the true risk measure
- ► Optimize assuming CVaR-20% or CVaR-95%
- Optimize assuming Convex Risk Measure
- Optimize assuming Coherent Risk Measure

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	000

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

$$\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$$

- Optimize knowing the true risk measure
- ► Optimize assuming CVaR-20% or CVaR-95%
- Optimize assuming Convex Risk Measure
- Optimize assuming Coherent Risk Measure
- Optimize assuming Law Invariant Convex Risk Measure

INTRODUCTION	Background	Methodology	EXPERIMENTS
	0000000	0000000	0000

We consider a static portfolio optimization problem with 4 assets over a period of one week

$$\min_{x \ge 0, \mathbf{1}^\top x = 1} \rho(R^\mathsf{T} x)$$

We simulate a decision maker's true risk attitude using the following unknown law inv. coherent risk measure

$$\rho := 0.1 \cdot \text{CVaR}_{20\%} + 0.9 \cdot \text{CVaR}_{95\%}.$$

We compare

- Optimize knowing the true risk measure
- ► Optimize assuming CVaR-20% or CVaR-95%
- Optimize assuming Convex Risk Measure
- Optimize assuming Coherent Risk Measure
- Optimize assuming Law Invariant Convex Risk Measure
- Optimize assuming Law Invariant Coherent Risk Measure

500

DETAILS OF EXPERIMENTS

Use historical data about weekly returns of 14 assets from July 2007 to June 2012.

 On any given week, last 13 weeks' returns constitute the outcome space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DETAILS OF EXPERIMENTS

Use historical data about weekly returns of 14 assets from July 2007 to June 2012.

- On any given week, last 13 weeks' returns constitute the outcome space
- ► For elicitation, we use a number of 13 weeks risk profiles from 2007 and 2008

Use historical data about weekly returns of 14 assets from July 2007 to June 2012.

- On any given week, last 13 weeks' returns constitute the outcome space
- ► For elicitation, we use a number of 13 weeks risk profiles from 2007 and 2008
- We report on 4000 experiments. For each one:
 - We randomly draw a date between 2009 and 2012
 - We randomly draw 4 assets for portfolio optimization
 - Performance of obtained portfolios is measured using true risk measure

BACKGROUND

METHODOLOGY 00000000

NUMERICAL RESULTS

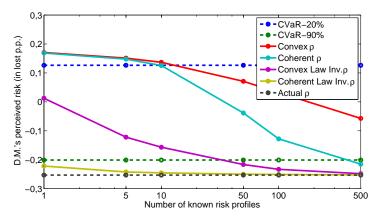


Figure: Average perceived risk for the optimized portfolios over 4000 experiments

INTRODUCTION	Background 00000000	Methodology 0000000	EXPERIMENTS
2			

CONCLUSION

- Assuming a particular form of CVaR can be misleading, one can instead use an ambiguity averse risk measure formulation
- Impact of information about global attitude is significant but can be replaced with information about risk profiles
- The measures that account for law invariance can achieve nearly optimal performance with a small amount of additional information

INTRODUCTION	Background	Methodology	EXPERIMENTS
	00000000	0000000	○○○●
2			

- CONCLUSION
 - Assuming a particular form of CVaR can be misleading, one can instead use an ambiguity averse risk measure formulation
 - Impact of information about global attitude is significant but can be replaced with information about risk profiles
 - The measures that account for law invariance can achieve nearly optimal performance with a small amount of additional information
 - ► In Armbruster and Delage (2012), we develop a similar framework but for expected utility theory