# Untying the Knot between a Stochastic Program and its Distribution

#### Erick Delage Assistant professor Service des Méthodes Quantitatives de Gestion HEC Montréal

#### Tuesday, August 16th, 2011

Introduction

Evidence that Managing an Investment Portfolio is Difficult

Value on Jan 1st 2009 of each dollar contribution made to the Caisse de Dépôts et de Placements

| Date of       | CDPQ   | 1-year guaranteed |  |
|---------------|--------|-------------------|--|
| contribution  |        | certificates      |  |
| Jan 1st, 2008 | \$0,75 | \$1,03            |  |
| Jan 1st, 2007 | \$0,79 | \$1,05            |  |
| Jan 1st, 2006 | \$0,91 | \$1,07            |  |
| Jan 1st, 2005 | \$1,04 | \$1,09            |  |
| Jan 1st, 2004 | \$1,17 | \$1,10            |  |
| Jan 1st, 2003 | \$1,35 | \$1,12            |  |
| Jan 1st, 2002 | \$1,22 | \$1,13            |  |
| Jan 1st, 2001 | \$1,16 | \$1,18            |  |
| Jan 1st, 2000 | \$1,23 | \$1,23            |  |

#### Why are Financial Investments so Fragile?

Some reasons:

- A wide range of financial securities can be used for investment
- Securities have become very complex
- The risks involved are difficult to evaluate
- Limited knowledge of how the market will behave in the future



#### Are Airlines Adventurous in their Fleet Acquisition?

- Fleet composition is a difficult decision problem:
  - Fleet contracts are signed 10 to 20 years ahead of schedule.
  - Many factors are still unknown at that time: e.g., passenger demand, fuel prices, etc.
- Yet, most airline companies sign these contracts based on a single scenario of what the future may be.
- Are airlines companies at risk of going bankrupt?

#### Introduction

#### Stochastic Programming Approach

Let's consider the stochastic programming problem:

 $\underset{\mathbf{x} \in \mathcal{X}}{\operatorname{maximize}} \quad \mathbb{E}\left[u(\mathsf{h}(\mathbf{x}, \boldsymbol{\xi}))\right]$ 

where  $\mathbf{x} =$  decisions and  $\boldsymbol{\xi} =$  uncertain parameters.

Here, we assume that we know:

- The distribution of the random vector  $\boldsymbol{\xi}$
- A utility function that matches investor's attitude to risk



### Difficulty of developing a probabilistic model

Developing an accurate probabilistic model requires heavy engineering efforts:

- Need to collect enough observations
- Need to consult with experts of the field of practice
- Need to make simplifying assumptions

Yet, there are inherent pitfalls in the process:

- Expecting that a scenario might occur does not determine its probability of occurring
- Unexpected event (e.g., economic crisis) might occur
- The future might actually not behave like the past

#### Limits of Expected Utility: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are either red or yellow (you don't know how many are red or yellow).

Experiment 1: Choose among the following two gambles

- Gamble A: If you draw a blue ball, then you win 100\$
- Gamble B: If you draw a red ball, then you win 100\$

Experiment 2: Choose among the following two gambles

- Gamble C: If you draw blue or yellow ball, then you win 100\$
- Gamble D: If you draw red or yellow ball, then you win 100\$

If you clearly prefer Gamble A & D, then you cannot be thinking in terms of expected utility.

#### Introduction

### Untying the SP from a Specific Distribution

- Let's consider that the choice of F is ambiguous
- $\bullet$  Use available information to define  $\mathcal{D},$  such that  $\textit{F} \in \mathcal{D}$
- We are faced with a multi-objective optimization problem:

$$\underset{\mathbf{x} \in \mathcal{X}}{\operatorname{maximize}} \{ \mathbb{E}_{F}[u(h(\mathbf{x}, \boldsymbol{\xi}))] \} \}_{F \in \mathcal{D}}$$

• Distributionally Robust Optimization values the lowest performing one

(DRSP) maximize min  $\underset{\mathbf{x} \in \mathcal{X}}{\operatorname{maximize}} \operatorname{min}_{F \in \mathcal{D}} \mathbb{E}_{F}[u(h(\mathbf{x}, \boldsymbol{\xi}))]$ 

- Introduced by H. Scarf in 1958
- Recently, we found ways of solving some DRSP's efficiently [Popescu (2007), Bertsimas et al., Natarajan et al., Delage et al. (2010)]
- Possible to promote performance differently depending on *F* [Föllmer et al. (2002), Li et al. (2011)]

#### Outline



- 2 Distributionally Robust Optimization
- 3 Distributions Can Be Misleading
- 4 Value of Stochastic Modeling



#### Outline

#### Introduction

- 2 Distributionally Robust Optimization
- 3 Distributions Can Be Misleading
- 4 Value of Stochastic Modeling

#### 5 Conclusion

### Assumptions on Objective Function

Let's make two assumptions about  $\mathbb{E}[u(h(\mathbf{x}, \boldsymbol{\xi}))]$ .

• The utility function is piecewise linear concave :

$$u(y) = \min_{1 \le k \le K} a_k y + b_k ,$$

The profit function is the maximum of a linear program with uncertainty limited to objective

$$\begin{aligned} \mathsf{h}(\mathbf{x},\boldsymbol{\xi}) &:= \max_{\mathbf{y}} & \mathbf{c}_1^\mathsf{T}\mathbf{x} + \boldsymbol{\xi}^\mathsf{T}C_2\mathbf{y} \\ & \text{s.t.} & A\mathbf{x} + B\mathbf{y} \leq \mathbf{b} \end{aligned}$$

**Distributionally Robust Optimization** 

#### Resolving Distributional Set from Data

- Question:
  - We have in hand i.i.d. samples  $\{\xi_i\}_{i=1}^M$
  - We know that  $\mathbb{P}(oldsymbol{\xi}\in\mathcal{S})=1$  and  $\mathcal{S}\subseteq\mathcal{B}(oldsymbol{0},R)$
  - We can estimate the mean and covariance matrix:

$$\hat{\boldsymbol{\mu}} = rac{1}{M}\sum_{i=1}^M \boldsymbol{\xi}_i \qquad \hat{\boldsymbol{\Sigma}} = rac{1}{M}\sum_{i=1}^M (\boldsymbol{\xi}_i - \hat{\boldsymbol{\mu}}) (\boldsymbol{\xi}_i - \hat{\boldsymbol{\mu}})^\mathsf{T}$$

- What do we know about the distribution behind these samples?
- Answer:

$$\mathcal{D}(\gamma) = \left\{ egin{array}{c} \mathbb{P}(oldsymbol{\xi} \in \mathcal{S}) = 1 \ \|\mathbb{E}[oldsymbol{\xi}] - \hat{\mu}\|_{\hat{\Sigma}^{-1/2}}^2 \leq \gamma_1 \ \mathbb{E}\left[(oldsymbol{\xi} - \hat{oldsymbol{\mu}})^{\mathsf{T}}
ight] \preceq (1 + \gamma_2) \hat{\Sigma} \end{array} 
ight\}$$

• With prob.  $> 1 - \delta$  the distribution is contained in  $\mathcal{D}(\gamma)$  for some  $\gamma_1 = O\left(\frac{R^2}{M}\log(1/\delta)\right)$  and  $\gamma_2 = O\left(\frac{R^2}{\sqrt{M}}\sqrt{\log(1/\delta)}\right)$ .

## The DRSP is a SDP

• The DRSP problem with  $\mathcal{D}(\gamma)$  is equivalent to

$$\max_{\mathbf{x}, \mathbf{Q}, \mathbf{q}, \mathbf{r}} \quad r - \left(\gamma_2 \hat{\Sigma} + \hat{\mu} \hat{\mu}^{\mathsf{T}}\right) \bullet \mathbf{Q} - \hat{\mu}^{\mathsf{T}} \mathbf{q} - \sqrt{\gamma_1} \|\hat{\Sigma}^{1/2} (\mathbf{q} + 2\mathbf{Q}\hat{\mu})\|$$
  
s.t. 
$$r \le \min_{\boldsymbol{\xi} \in \mathcal{S}} u(\mathsf{h}(\mathbf{x}, \boldsymbol{\xi})) + \boldsymbol{\xi}^{\mathsf{T}} \mathbf{q} + \boldsymbol{\xi}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\xi} \quad (\star)$$
$$\mathbf{Q} \succeq 0$$

If S = polygon or ellipsoid, then DRSP equivalent to semi-definite program.

E.g., when  $\mathcal{S} = \mathbb{R}^m$ , Constraint (\*) can be replaced by

$$\begin{bmatrix} \mathbf{Q} & (\mathbf{q} + a_k C_2 y_k)/2 \\ (\mathbf{q} + a_k C_2 y_k)^{\mathsf{T}}/2 & a_k c_1^{\mathsf{T}} \mathbf{x} + b_k - r \end{bmatrix} \succeq \mathbf{0} , \forall k$$

## The Robustness of the Deterministic Solution

If we are risk neutral we might not even need distribution information

| Theorem                                                                                                                                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| The solution of                                                                                                                                                                        |  |  |  |  |
| $ \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{maximize}}  \mathbb{E}[h(\mathbf{x}, \mu)] $                                                                                     |  |  |  |  |
| is optimal with respect to                                                                                                                                                             |  |  |  |  |
| $ \begin{array}{ll} \underset{\mathbf{x}\in\mathcal{X}}{\operatorname{maximize}} & \inf_{F\in\mathcal{D}(\mu,\Psi)} & \mathbb{E}_{F}[h(\mathbf{x},\boldsymbol{\xi})] \ , \end{array} $ |  |  |  |  |
| for any set of convex functions $\Psi$ with                                                                                                                                            |  |  |  |  |
| $\mathcal{D}(\mu,\Psi) = \left\{ egin{array}{c} {\mathcal{F}} & {\mathbb{E}}[m{\xi}] = \mu \ {\mathbb{E}}[\psi(m{\xi})] \leq 0 \;,\; orall  \psi \in \Psi \end{array}  ight\} .$      |  |  |  |  |

### Outline

#### Introduction

2 Distributionally Robust Optimization

#### 3 Distributions Can Be Misleading

4 Value of Stochastic Modeling

#### 5 Conclusion

### Distributionally Robust Portfolio Optimization

Let's consider the case of portfolio optimization:

$$\max_{\mathbf{x}\in\mathcal{X}} \min_{F\in\mathcal{D}} \mathbb{E}_{F}[u(\boldsymbol{\xi}^{\mathsf{T}}\mathbf{x})] ,$$

where  $x_i$  is how much is invested in stock *i* with future return  $\xi_i$ .

Does the robust solution perform better than a stochastic programming solution?

$$\mathcal{D} = \mathcal{D}(\gamma)$$
 vs.  $\mathcal{D} = \{\hat{F}\}$ 

### Experiments in Portfolio Optimization

#### 30 stocks tracked over years 1992-2007 using Yahoo! Finance



**Distributions Can Be Misleading** 

#### Wealth Evolution for 300 Experiments



• 10% and 90% percentiles are indicated periodically.

- 79% of time, the DRSP outperformed the exp. utility model
- 67% improvement on average using DRSP with  $\mathcal{D}(\gamma)$









### Distributionally Robust Partitioning

• Given  $\mathcal{D}$ , we partition so that the largest workload over the worst distribution of demand points is as small as possible

$$\min_{\{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_K\}} \sup_{F \in \mathcal{D}} \left\{ \max_i \mathbb{E}[TSP(\{\xi_1, \xi_2, \dots, \xi_N\} \cap \mathcal{R}_i)] \right\}$$

• A side product is to characterize for any partition what is a worst-case distribution of demand locations



## **Distributionally Robust Partitioning**

We simulated three partition schemes on a set of randomly generated parcel delivery problems where the territory needed to be divided into two regions and the demand is drawn from a mixture of truncated Gaussian distribution



**Distributions Can Be Misleading** 

### Border Patrol Workload Partitioning

Robust partitions of the USA-Mexico border obtained using our branch & bound algorithm.



### Outline

#### Introduction

- 2 Distributionally Robust Optimization
- 3 Distributions Can Be Misleading
- 4 Value of Stochastic Modeling

#### 5 Conclusion

## The Value of Stochastic Modeling

Consider the situation:

- $\textcircled{0} \quad We \text{ know of a set } \mathcal{D} \text{ such that } F \in \mathcal{D}$
- 2 We have a candidate solution  $\mathbf{x}_1$  in mind
- **③** Is it worth developing a stochastic model:  $\mathcal{D} \rightarrow F$ ?
  - (a) If yes, then develop a model & solve it
  - (b) Otherwise, implement  $x_1$

The Value of Stochastic Modeling (VSM) gives an optimistic estimate of the value of obtaining perfect information about *F*.

$$\mathcal{VSM}(\mathbf{x}_1) := \sup_{F \in \mathcal{D}} \left\{ \max_{\mathbf{x}_2} \mathbb{E}_F[\mathsf{h}(\mathbf{x}_2, \boldsymbol{\xi})] - \mathbb{E}_F[\mathsf{h}(\mathbf{x}_1, \boldsymbol{\xi})] \right\}$$

#### Theorem

Unfortunately, evaluating  $\mathcal{VSM}(x_1)$  exactly is NP-hard in general.

Value of Stochastic Modeling

#### Bounding the Value of Stochastic Modeling

#### Theorem

If  $S \subseteq \{\boldsymbol{\xi} \mid \|\boldsymbol{\xi}\|_{1} \leq \rho\}$ , an upper bound can be evaluated in  $O(d^{3.5} + d T_{DCP})$  using:  $\mathcal{UB}(\mathbf{x}_{1}, \bar{\mathbf{y}}_{1}) := \min_{s, \mathbf{q}} \quad s + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{q}$ s.t.  $s \geq \alpha(\rho \mathbf{e}_{i}) - \rho \mathbf{e}_{i}^{\mathsf{T}} \mathbf{q}, \forall i \in \{1, ..., d\}$  $s \geq \alpha(-\rho \mathbf{e}_{i}) + \rho \mathbf{e}_{i}^{\mathsf{T}} \mathbf{q}, \forall i \in \{1, ..., d\},$ 

where  $\alpha(\boldsymbol{\xi}) = \max_{\mathbf{x}_2} h(\mathbf{x}_2, \boldsymbol{\xi}) - h(\mathbf{x}_1, \boldsymbol{\xi}; \bar{\mathbf{y}}_1).$ 

- ullet  $\mathcal{UB}$  only uses information about  $\mu$  and  $\mathcal S$
- $\mathcal{UB}$  simplifies the structure of  $\mathcal S$
- $\mathcal{UB}$  assumes the candidate decision  $\mathbf{y}_1$  cannot adapt to  $\boldsymbol{\xi}$

Value of Stochastic Modeling

#### Mathematical formulation for Fleet Mix Problem

The fleet composition problem is a stochastic mixed integer LP

Fleet mix   

$$\begin{array}{c} \max_{k \in \{v \mid time(v)=0\}} \mathbb{E}\left[-\underbrace{\mathbf{o}_{ownership}^{\mathsf{T}}\mathbf{x}}_{ownership \ cost} + \underbrace{h(\mathbf{x}, \tilde{\mathbf{p}}, \tilde{\mathbf{c}}, \tilde{\mathbf{L}})}_{future \ profits}\right], \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{fight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit} \\
\text{flight profit} \\
\text{rental cost} \\
\text{flight profit} \\
\text{flight profit$$

#### Experiments in Fleet Mix Optimization

We experimented with three test cases :

- **3** types of aircrafts, 84 flights,  $\sigma_{\tilde{p}_i}/\mu_{\tilde{p}_i} \in [4\%, 53\%]$
- 2 4 types of aircrafts, 240 flights,  $\sigma_{\tilde{p}_i}/\mu_{\tilde{p}_i} \in [2\%, 20\%]$
- **③** 13 types of aircrafts, 535 flights,  $\sigma_{\tilde{p}_i}/\mu_{\tilde{p}_i} \in [2\%, 58\%]$

Results:

| Test  | Computation Times |                |                | Upper bound |
|-------|-------------------|----------------|----------------|-------------|
| cases | DCP               | SP (100 scen.) | $\mathcal{UB}$ | for VSM     |
| #1    | 0.6 s             | 3 min          | 12 sec         | 6%          |
| #2    | 1 s               | 14 min         | 40 sec         | 1%          |
| #3    | 5 s               | 21 h           | 2 min          | 7%          |

Conclusions:

• It's wasteful to invest more than 7% of profits in extra info

### Outline

#### Introduction

- 2 Distributionally Robust Optimization
- 3 Distributions Can Be Misleading
- 4 Value of Stochastic Modeling

#### **5** Conclusion

#### Conclusion & Future Work

- Many forms of the DRSP are tractable
- Some actually reduce to the DCP
- Thinking we know the distribution can be misleading
- Knowing the actual distribution might not help that much
- There are tools that help estimate how much the true distribution is worth
- Open questions :
  - Can tractable DRSP be made consistent ?
  - Can DRSP be extended to multi-objective problems ?
  - How to deal with ambiguity about one's utility function ?

#### Conclusion

### Bibliography

- Armbruster, B., E. Delage. 2011. Decision making under uncertainty when preference information is incomplete. Working paper.
- Bertsimas, D., X. V. Doan, K. Natarajan, C. P. Teo. 2010. Models for minimax stochastic linear optimization problems with risk aversion. *Mathematics of Operations Research* 35(3) 580–602.
- Carlsson, J. G., E. Delage. 2011. Robust partitioning for stochastic multi-vehicle routing. Working paper.
- Delage, E., S. Arroyo, Y. Ye. 2011. The value of stochastic modeling in two-stage stochastic programs with cost uncertainty. Working paper.
- Delage, E., Y. Ye. 2010. Distributionally robust optimization under moment uncertainty with application to data-driven problems. *Operations Research* 58(3) 595–612.
- Natarajan, K., M. Sim, J. Uichanco. 2010. Tractable Robust Expected Utility and Risk Models for Portfolio Optimization. *Mathematical Finance* **20**(4) 695–731.

# Questions & Comments ...

# ... Thank you!