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Introduction

Evidence that Managing an Investment Portfolio is Difficult

Value on Jan 1st 2009 of each dollar contribution
made to the Caisse de Dépôts et de Placements

Date of CDPQ 1-year guaranteed
contribution certificates

Jan 1st, 2008 $0,75 $1,03
Jan 1st, 2007 $0,79 $1,05
Jan 1st, 2006 $0,91 $1,07
Jan 1st, 2005 $1,04 $1,09
Jan 1st, 2004 $1,17 $1,10
Jan 1st, 2003 $1,35 $1,12
Jan 1st, 2002 $1,22 $1,13
Jan 1st, 2001 $1,16 $1,18
Jan 1st, 2000 $1,23 $1,23
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Introduction

Why are Financial Investments so Fragile?

Some reasons:

A wide range of financial securities can be used for investment

Securities have become very complex

The risks involved are difficult to evaluate

Limited knowledge of how the market will behave in the future
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Introduction

Are Airlines Adventurous in their Fleet Acquisition?

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
e.g., passenger demand, fuel prices, etc.

Yet, most airline companies sign these contracts based on a
single scenario of what the future may be.

Are airlines companies at risk of going bankrupt?
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Introduction

Stochastic Programming Approach

Let’s consider the stochastic programming problem:

maximize
x∈X

E [u(h(x, ξ))]

where x = decisions and ξ = uncertain parameters.

Here, we assume that we know:

The distribution of the random vector ξ

A utility function that matches investor’s attitude to risk
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Introduction

Difficulty of developing a probabilistic model

Developing an accurate probabilistic model requires heavy
engineering efforts:

Need to collect enough observations

Need to consult with experts of the field of practice

Need to make simplifying assumptions

Yet, there are inherent pitfalls in the process:

Expecting that a scenario might occur does not determine its
probability of occurring

Unexpected event (e.g., economic crisis) might occur

The future might actually not behave like the past
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Introduction

Limits of Expected Utility: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are
either red or yellow (you don’t know how many are red or yellow).

Experiment 1: Choose among the following two gambles

Gamble A: If you draw a blue ball, then you win 100$

Gamble B: If you draw a red ball, then you win 100$

Experiment 2: Choose among the following two gambles

Gamble C: If you draw blue or yellow ball, then you win 100$

Gamble D: If you draw red or yellow ball, then you win 100$

If you clearly prefer Gamble A & D, then you cannot be thinking in
terms of expected utility.
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Introduction

Untying the SP from a Specific Distribution

Let’s consider that the choice of F is ambiguous

Use available information to define D, such that F ∈ D
We are faced with a multi-objective optimization problem:

maximize
x∈X

{ EF [u(h(x, ξ))]} }F∈D

Distributionally Robust Optimization values the lowest
performing one

(DRSP) maximize
x∈X

min
F∈D

EF [u(h(x, ξ))]

Introduced by H. Scarf in 1958
Recently, we found ways of solving some DRSP’s efficiently
[Popescu (2007), Bertsimas et al., Natarajan et al., Delage et al. (2010)]

Possible to promote performance differently depending on F

[Föllmer et al. (2002), Li et al. (2011)]
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Distributionally Robust Optimization

Assumptions on Objective Function

Let’s make two assumptions about E [u(h(x, ξ))].

1 The utility function is piecewise linear concave :

u(y) = min
1≤k≤K

aky + bk ,

2 The profit function is the maximum of a linear program with
uncertainty limited to objective

h(x, ξ) := max.
y

cT1 x+ ξTC2y

s.t. Ax+ By ≤ b
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Distributionally Robust Optimization

Resolving Distributional Set from Data

Question:
We have in hand i.i.d. samples {ξi}Mi=1

We know that P(ξ ∈ S) = 1 and S ⊆ B(0,R)
We can estimate the mean and covariance matrix:

µ̂ =
1

M

M∑

i=1

ξi Σ̂ =
1

M

M∑

i=1

(ξi − µ̂)(ξi − µ̂)T

What do we know about the distribution behind these samples?

Answer:

D(γ) =






F

∣
∣
∣
∣
∣
∣

P(ξ ∈ S) = 1
‖E [ξ]− µ̂‖2

Σ̂−1/2
≤ γ1

E [(ξ − µ̂)(ξ − µ̂)T] � (1 + γ2)Σ̂







With prob. > 1− δ the distribution is contained in D(γ) for

some γ1 = O
(

R2

M
log(1/δ)

)

and γ2 = O
(

R2
√
M

√

log(1/δ)
)

.
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Distributionally Robust Optimization

The DRSP is a SDP

The DRSP problem with D(γ) is equivalent to

max.
x, Q,q,r

r −
(

γ2Σ̂ + µ̂µ̂T
)

•Q− µ̂Tq−√
γ1 ‖Σ̂1/2(q+ 2Qµ̂)‖

s.t. r ≤ min
ξ∈S

u(h(x, ξ)) + ξTq+ ξTQξ (⋆)

Q � 0

If S = polygon or ellipsoid, then DRSP equivalent to
semi-definite program.
E.g., when S = R

m, Constraint (⋆) can be replaced by

[
Q (q+ akC2yk)/2

(q+ akC2yk)
T/2 akc

T
1 x+ bk − r

]

� 0 , ∀ k
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Distributionally Robust Optimization

The Robustness of the Deterministic Solution

If we are risk neutral we might not even need distribution
information

Theorem

The solution of

maximize
x∈X

E[h(x, µ)]

is optimal with respect to

maximize
x∈X

inf
F∈D(µ,Ψ)

EF [h(x, ξ)] ,

for any set of convex functions Ψ with

D(µ,Ψ) =

{

F

∣
∣
∣
∣

E[ξ] = µ
E[ψ(ξ)] ≤ 0 , ∀ψ ∈ Ψ

}

.
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Distributions Can Be Misleading

Distributionally Robust Portfolio Optimization

Let’s consider the case of portfolio optimization:

max.
x∈X

min
F∈D

EF [u(ξ
Tx)] ,

where xi is how much is invested in stock i with future return ξi .

Does the robust solution perform better than a stochastic
programming solution?

D = D(γ) vs. D = {F̂}
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Distributions Can Be Misleading

Experiments in Portfolio Optimization

30 stocks tracked over years 1992-2007 using Yahoo! Finance
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Distributions Can Be Misleading

Wealth Evolution for 300 Experiments
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10% and 90% percentiles are indicated periodically.

79% of time, the DRSP outperformed the exp. utility model

67% improvement on average using DRSP with D(γ)
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Distributions Can Be Misleading

Multi-Vehicle Routing on a Planar Region

Divide a planar region into K subregions, each serviced by a
different vehicle, so that the total workload be most evenly
distributed among the fleet
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Distributions Can Be Misleading

Multi-Vehicle Routing on a Planar Region
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Distributions Can Be Misleading

Multi-Vehicle Routing on a Planar Region

Divide a planar region into K subregions, each serviced by a
different vehicle, so that the total workload be most evenly
distributed among the fleet
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Distributions Can Be Misleading

Distributionally Robust Partitioning

Given D, we partition so that the largest workload over the
worst distribution of demand points is as small as possible

min.
{R1,R2,...,RK}

sup
F∈D

{

max
i

E[TSP({ξ1, ξ2, ..., ξN} ∩ Ri )]

}

,

A side product is to characterize for any partition what is a
worst-case distribution of demand locations
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Distributions Can Be Misleading

Distributionally Robust Partitioning

We simulated three partition schemes on a set of randomly
generated parcel delivery problems where the territory needed to be
divided into two regions and the demand is drawn from a mixture
of truncated Gaussian distribution
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Distributions Can Be Misleading

Border Patrol Workload Partitioning

Robust partitions of the USA-Mexico border obtained using our
branch & bound algorithm.
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Outline

1 Introduction

2 Distributionally Robust Optimization

3 Distributions Can Be Misleading

4 Value of Stochastic Modeling

5 Conclusion

26 E. Delage Distributionally Robust Optimization



Value of Stochastic Modeling

The Value of Stochastic Modeling

Consider the situation:

1 We know of a set D such that F ∈ D
2 We have a candidate solution x1 in mind
3 Is it worth developing a stochastic model: D → F?

(a) If yes, then develop a model & solve it
(b) Otherwise, implement x1

The Value of Stochastic Modeling (VSM) gives an optimistic
estimate of the value of obtaining perfect information about F .

VSM(x1) := sup
F∈D

{

max
x2

EF [h(x2, ξ)]− EF [h(x1, ξ)]

}

Theorem

Unfortunately, evaluating VSM(x1) exactly is NP-hard in general.
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Value of Stochastic Modeling

Bounding the Value of Stochastic Modeling

Theorem

If S ⊆ {ξ | ‖ξ‖1 ≤ ρ}, an upper bound can be evaluated in

O(d3.5 + d TDCP) using:

UB(x1, ȳ1) := min
s,q

s + µTq

s.t. s ≥ α(ρei)− ρeTi q , ∀ i ∈ {1, ..., d}
s ≥ α(−ρei ) + ρeTi q , ∀ i ∈ {1, ..., d} ,

where α(ξ) = maxx2 h(x2, ξ)− h(x1, ξ; ȳ1).

UB only uses information about µ and S
UB simplifies the structure of S
UB assumes the candidate decision y1 cannot adapt to ξ
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Value of Stochastic Modeling

Mathematical formulation for Fleet Mix Problem

The fleet composition problem is a stochastic mixed integer LP

max.
x

E [− oTx
︸︷︷︸

ownership cost

+ h(x, p̃, c̃, L̃)
︸ ︷︷ ︸

future profits

] ,

with h(x, p̃, c̃, L̃) :=

max
z≥0,y≥0,w

∑

k

(
∑

i

flight profit
︷ ︸︸ ︷

p̃ki w
k
i −

rental cost
︷ ︸︸ ︷

c̃k(zk − xk)
+ +

lease revenue
︷ ︸︸ ︷

L̃k(xk − zk)
+ )

s.t. w k
i ∈ {0, 1} , ∀ k , ∀ i &

∑

k

w k
i = 1 , ∀ i } Cover

yk
g∈in(v) +

∑

i∈arr(v)
w k
i = yk

g∈out(v) +
∑

i∈dep(v)
w k
i , ∀ k , ∀ v } Balance

zk =
∑

v∈{v|time(v)=0}
(yk

g∈in(v) +
∑

i∈arr(v)
w k
i ) , ∀k } Count
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Value of Stochastic Modeling

Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights, σp̃i/µp̃i ∈ [4%, 53%]

2 4 types of aircrafts, 240 flights, σp̃i /µp̃i ∈ [2%, 20%]

3 13 types of aircrafts, 535 flights, σp̃i /µp̃i ∈ [2%, 58%]

Results:

Test Computation Times Upper bound
cases DCP SP (100 scen.) UB for VSM

#1 0.6 s 3 min 12 sec 6%
#2 1 s 14 min 40 sec 1%
#3 5 s 21 h 2 min 7%

Conclusions:

It’s wasteful to invest more than 7% of profits in extra info
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Conclusion

Outline

1 Introduction

2 Distributionally Robust Optimization

3 Distributions Can Be Misleading

4 Value of Stochastic Modeling

5 Conclusion

31 E. Delage Distributionally Robust Optimization



Conclusion

Conclusion & Future Work

Many forms of the DRSP are tractable

Some actually reduce to the DCP

Thinking we know the distribution can be misleading

Knowing the actual distribution might not help that much

There are tools that help estimate how much the true
distribution is worth

Open questions :

Can tractable DRSP be made consistent ?
Can DRSP be extended to multi-objective problems ?
How to deal with ambiguity about one’s utility function ?
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Conclusion
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Conclusion

Questions & Comments ...

... Thank you!
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