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Distributionally Robust Optimization

Stochastic Programming Approach

Let’s consider a stochastic programming problem:

maximize
x∈X

E [u(h(x, ξ))]

where x = decisions and ξ = uncertain parameters.
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Distributionally Robust Optimization

Stochastic Programming Approach

Let’s consider a stochastic programming problem:

maximize
x∈X

E [u(h(x, ξ))]

where x = decisions and ξ = uncertain parameters.

Here, we assume :

We know the distribution of the random vector ξ

The profit function h(x, ξ) is concave in x and convex in ξ

We have a piecewise linear utility function that characterizes
investor’s risk aversion

u(y) = min
k∈{1,2,...,K}

αky + βk
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Distributionally Robust Optimization

Difficulty of developing a probabilistic model

Developing an accurate probabilistic model requires heavy
engineering efforts:

Need to collect enough observations

Need to consult with experts of the field of practice

Need to make simplifying assumptions
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Distributionally Robust Optimization

Difficulty of developing a probabilistic model

Developing an accurate probabilistic model requires heavy
engineering efforts:

Need to collect enough observations

Need to consult with experts of the field of practice

Need to make simplifying assumptions

Yet, there are inherent pitfalls in the process:

Expecting that a scenario might occur does not determine its
probability of occurring

Unexpected event (e.g., economic crisis) might occur

The future might actually not behave like the past
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Distributionally Robust Optimization

Limits of Expected Utility: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are
either red or yellow (you don’t know how many are red or yellow).
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Distributionally Robust Optimization

Limits of Expected Utility: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are
either red or yellow (you don’t know how many are red or yellow).

Experiment 1: Choose among the following two gambles

Gamble A: If you draw a blue ball, then you win 100$

Gamble B: If you draw a red ball, then you win 100$
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Distributionally Robust Optimization

Limits of Expected Utility: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are
either red or yellow (you don’t know how many are red or yellow).

Experiment 1: Choose among the following two gambles

Gamble A: If you draw a blue ball, then you win 100$

Gamble B: If you draw a red ball, then you win 100$

Experiment 2: Choose among the following two gambles

Gamble C: If you draw blue or yellow ball, then you win 100$

Gamble D: If you draw red or yellow ball, then you win 100$
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Distributionally Robust Optimization

Limits of Expected Utility: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are
either red or yellow (you don’t know how many are red or yellow).

Experiment 1: Choose among the following two gambles

Gamble A: If you draw a blue ball, then you win 100$

Gamble B: If you draw a red ball, then you win 100$

Experiment 2: Choose among the following two gambles

Gamble C: If you draw blue or yellow ball, then you win 100$

Gamble D: If you draw red or yellow ball, then you win 100$

If you clearly prefer Gamble A & D, then you cannot be thinking in
terms of expected utility.
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Distributionally Robust Optimization

The Distributionally Robust Formulation

We consider that the choice of F is ambiguous

Use available information to define D, such that F ∈ D
Distributionally Robust Optimization values a decision using
the lowest performing distribution

(DRSP) maximize
x∈X

inf
F∈D

EF [u(h(x, ξ))]
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Distributionally Robust Optimization

The Distributionally Robust Formulation

We consider that the choice of F is ambiguous

Use available information to define D, such that F ∈ D
Distributionally Robust Optimization values a decision using
the lowest performing distribution

(DRSP) maximize
x∈X

inf
F∈D

EF [u(h(x, ξ))]

Introduced by H. Scarf in 1958
Recently, we found ways of solving some DRSP’s efficiently
[Popescu (2007), Bertsimas et al., Natarajan et al., Delage et al. (2010)]

Growing interest for promoting performance differently
depending on F [Föllmer et al. (2002), Li et al. (2011)]
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A Class of Distributional Sets

Definition of D(ψ)

Let D(ψ) be a set of the form

D(ψ) =

{

F ∈ M
∣
∣
∣
∣

PF (ξ ∈ S) = 1
zT (EF [ψ(ξ)]− b) ≤ 0 , ∀ z ∈ K

}

such that:

1 The set S is closed, convex, and bounded

2 The set K ⊆ R
p is a convex cone

3 ∀ z ∈ K, the function g(z, ξ) := zTψ(ξ) is convex in ξ

4 Both S and K have “nice” representations

S = {ξ ∈ R
m|gS

i (ξ) ≤ 0∀ i}

K = {z ∈ R
p|gK

j (z) ≤ 0∀ j}
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A Class of Distributional Sets

D(ψ) imposes that F be Concentrated

Lemma

Given any random vector ζ such that Fζ ∈ D(ψ), for all 0 ≤ θ ≤ 1
the distribution of ζ′ := θ(ζ − E[ζ]) + E[ζ] also has a distribution

in D(ψ).
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A Class of Distributional Sets

D(ψ) imposes that F be Concentrated

Lemma

Given any random vector ζ such that Fζ ∈ D(ψ), for all 0 ≤ θ ≤ 1
the distribution of ζ′ := θ(ζ − E[ζ]) + E[ζ] also has a distribution

in D(ψ).

Proof: (let µ := E[ζ])

1 Since S is convex and P(ζ ∈ S) = 1, we have that E[ζ] ∈ S,
hence

P(ζ ′ ∈ S) = P(θζ + (1− θ)µ ∈ S) = 1

2 By Jensen’s inequality for any z ∈ K, we have that

E[zTψ(θζ + (1− θ)µ)] ≤ E[θzTψ(ζ) + (1− θ)zTψ(µ)]

= θE[zTψ(ζ)] + (1− θ)zTψ(µ)

≤ E[zTψ(ζ)] ≤ zTb
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A Class of Distributional Sets

Examples

Upper bounds on partial moments : E[max(0, ξi − µ̂i)
2] ≤ bi

since equivalent to

z(E[max(0, ξi − µ̂i )
2]− bi) ≤ 0, ∀ z ≥ 0
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A Class of Distributional Sets

Examples

Upper bounds on partial moments : E[max(0, ξi − µ̂i)
2] ≤ bi

since equivalent to

z(E[max(0, ξi − µ̂i )
2]− bi) ≤ 0, ∀ z ≥ 0

Confidence ellipsoid for mean :

(µ̂− E[ξ])T Σ̂−1(µ̂− E[ξ]) ≤ γ

since equivalent to:

E

[

Z •
[

Σ̂ (µ̂− ξ)
(µ̂− ξ)T γ

]]

≥ 0, ∀Z � 0
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A Class of Distributional Sets

Examples

Upper bounds on partial moments : E[max(0, ξi − µ̂i)
2] ≤ bi

since equivalent to

z(E[max(0, ξi − µ̂i )
2]− bi) ≤ 0, ∀ z ≥ 0

Confidence ellipsoid for mean :

(µ̂− E[ξ])T Σ̂−1(µ̂− E[ξ]) ≤ γ

since equivalent to:

E

[

Z •
[

Σ̂ (µ̂− ξ)
(µ̂− ξ)T γ

]]

≥ 0, ∀Z � 0

Upper bound on second order moment matrix

E[(ξ − µ̂)(ξ − µ̂)T ] � γΣ̂

since equivalent to:

E[Z • ((ξ − µ̂)(ξ − µ̂)T − γΣ̂)] ≤ 0, ∀Z � 0
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A Class of Distributional Sets

Resolving Distributional Set from Data

Question:
We have in hand i.i.d. samples {ξi}Mi=1

We know that P(ξ ∈ S) = 1 and S ⊆ B(0,R)
We can estimate the mean and covariance matrix:

µ̂ =
1

M

M∑

i=1

ξi Σ̂ =
1

M

M∑

i=1

(ξi − µ̂)(ξi − µ̂)T

What do we know about the distribution behind these samples?
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A Class of Distributional Sets

Resolving Distributional Set from Data

Question:
We have in hand i.i.d. samples {ξi}Mi=1

We know that P(ξ ∈ S) = 1 and S ⊆ B(0,R)
We can estimate the mean and covariance matrix:

µ̂ =
1

M

M∑

i=1

ξi Σ̂ =
1

M

M∑

i=1

(ξi − µ̂)(ξi − µ̂)T

What do we know about the distribution behind these samples?

Answer:

D2(γ) =






F

∣
∣
∣
∣
∣
∣

P(ξ ∈ S) = 1
‖E [ξ]− µ̂‖2

Σ̂−1/2
≤ γ1

E [(ξ − µ̂)(ξ − µ̂)T] � (1 + γ2)Σ̂







With prob. > 1− δ the distribution is contained in D2(γ) for

some γ1 = O
(

R2

M
log(1/δ)

)

and γ2 = O
(

R2
√
M

√

log(1/δ)
)

.

12 E. Delage A Class of Uncertainty Sets for DRO



A Class of Distributional Sets

Verifying whether D(ψ) is Empty or Not

One finds a distribution that lies in the relative interior of
D(ψ) by verifying that t∗ > 0 for the problem:

max.
F∈M,t∈R

t

s.t. zT(EF [ψ(ξ)]− b+ tz∗0) ≤ 0 , ∀ z ∈ K
PF (ξ ∈ S) = 1 ,

where z∗0 is any vector lying in the strict interior of K∗.

Since F ∈ D(ψ) implies that δEF [ξ] ∈ D(ψ), the feasibility
problem is equivalent to verifying that there is a µ ∈ S such
that b− ψ(µ) is in the strict interior of K∗, a “simple” finite
dimensional constraint qualification verification.
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A Class of Distributional Sets

Verifying whether D(ψ) is Empty or Not

One finds a distribution that lies in the relative interior of
D(ψ) by verifying that t∗ > 0 for the problem:

max.
µ∈S,t∈R

t

s.t. zT(ψ(µ)− b+ tz∗0) ≤ 0 , ∀ z ∈ K ,

where z∗0 is any vector lying in the strict interior of K∗.

Remember that ψ(EF [ξ]) ≤ EF [ψ(ξ)] , ∀F ∈ M.
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A Class of Distributional Sets

Verifying whether D(ψ) is Empty or Not

One finds a distribution that lies in the relative interior of
D(ψ) by verifying that t∗ > 0 for the problem:

max.
µ∈S,t∈R

t

s.t. zT(ψ(µ)− b+ tz∗0) ≤ 0 , ∀ z ∈ K ,

where z∗0 is any vector lying in the strict interior of K∗.

Remember that ψ(EF [ξ]) ≤ EF [ψ(ξ)] , ∀F ∈ M.

This problem verifies that ∃µ ∈ S such that b− ψ(µ) is in
the strict interior of K∗, i.e. a “simple” finite dimensional
constraint qualification verification.
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A Class of Distributional Sets

Solving the DRSP problem

Given that ∃F ∈ D(ψ) that strictly satisfies all moment
constraints, then one can apply duality and solve the
equivalent problem:

maximize
x∈X

inf
F∈M

EF [u(h(x, ξ))]

s.t. PF (ξ ∈ S) = 1

zT(EF [ψ(ξ)]− b) ≤ 0 , ∀ z ∈ K

Applying the robust optimization analysis, we can reformulate
each constraints through duality:

min
ξ∈S

αkh(x, ξ) + βk + zTψ(ξ) ≥ 0
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A Class of Distributional Sets

Solving the DRSP problem

Given that ∃F ∈ D(ψ) that strictly satisfies all moment
constraints, then one can apply duality and solve the
equivalent problem:

maximize
x∈X

max
r ,z

r − bTz

s.t. u(h(x, ξ))− r + zTψ(ξ) ≥ 0 , ∀ ξ ∈ S
z ∈ K

Applying the robust optimization analysis, we can reformulate
each constraints through duality:

min
ξ∈S

αkh(x, ξ) + βk + zTψ(ξ) ≥ 0
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A Class of Distributional Sets

Solving the DRSP

Given that ∃F ∈ D(ψ) that strictly satisfies all moment
constraints, then one can apply duality and solve the
equivalent problem:

maximize
x, r ,z

r − bTz

s.t. αkh(x, ξ) + βk − r + zTψ(ξ) ≥ 0 , ∀ ξ ∈ S , ∀ k
z ∈ K , x ∈ X
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A Class of Distributional Sets

Solving the DRSP

Given that ∃F ∈ D(ψ) that strictly satisfies all moment
constraints, then one can apply duality and solve the
equivalent problem:

maximize
x, r ,z

r − bTz

s.t. αkh(x, ξ) + βk − r + zTψ(ξ) ≥ 0 , ∀ ξ ∈ S , ∀ k
z ∈ K , x ∈ X

Applying the robust optimization analysis, we can reformulate
each constraints through duality:

min
ξ∈S

αkh(x, ξ) + βk − r + zTψ(ξ) ≥ 0

17 E. Delage A Class of Uncertainty Sets for DRO
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Distributionally Robust Portfolio Optimization

Distributionally Robust Portfolio Optimization

Consider the case of portfolio optimization (with call options):

max.
x,y

inf
F∈D

EF [u(h(x, y, ξ))]

s.t.
∑

i

xi + yi ≤ B

x ≥ 0 , y ≥ 0

where xi = how much is invested in stock i with future return ξi ,
yi = amount invested in call option purchased on ξi , and

h(x, y, ξ) := max.
z

ξT x+
∑

i

(ξi − ξ̄i )zi

s.t. 0 ≤ z ≤ y
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Distributionally Robust Portfolio Optimization

Distributionally Robust Portfolio Optimization

Consider the case of portfolio optimization (with call options):

max.
x,y

inf
F∈D

EF [u(h(x, y, ξ))]

s.t.
∑

i

xi + yi ≤ B

x ≥ 0 , y ≥ 0

where xi = how much is invested in stock i with future return ξi ,
yi = amount invested in call option purchased on ξi , and

h(x, y, ξ) := max.
z

ξT x+
∑

i

(ξi − ξ̄i )zi

s.t. 0 ≤ z ≤ y

We bound the distributions with D2(γ) and consider the support
set described by S = {ξ|Aξ ≤ b}
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Distributionally Robust Portfolio Optimization

DRSP reduces to SDP

In this context, the robust constraint

min
ξ∈S

αkh(x, ξ) + βk + zTψ(ξ) ≥ 0

becomes:

minimize
ξ∈S

max
0≤z≤y

αk(ξ
Tx+

∑

i

(ξi−ξ̄i)zi )+βk−r+2pTξ+ξTQξ−2µ̂TQξ
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Distributionally Robust Portfolio Optimization

DRSP reduces to SDP

In this context, the robust constraint

min
ξ∈S

αkh(x, ξ) + βk + zTψ(ξ) ≥ 0

becomes:

minimize
ξ∈S

max
0≤z≤y

αk(ξ
Tx+

∑

i

(ξi−ξ̄i)zi )+βk−r+2pTξ+ξTQξ−2µ̂TQξ

By Sion’s minimax and with use of duality we get the problem:

max.
0≤z≤y

max
λ≥0

min
ξ

αk(ξ
T x+

∑

i

(ξi−ξ̄i)zi)+βk . . . −2µ̂TQξ+λT (Aξ−b)
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Distributionally Robust Portfolio Optimization

DRSP reduces to SDP

In this context, the robust constraint

min
ξ∈S

αkh(x, ξ) + βk + zTψ(ξ) ≥ 0

becomes:

minimize
ξ∈S

max
0≤z≤y

αk(ξ
Tx+

∑

i

(ξi−ξ̄i)zi )+βk−r+2pTξ+ξTQξ−2µ̂TQξ

By Sion’s minimax and with use of duality we get the problem:

max.
0≤z≤y

max
λ≥0

min
ξ

αk(ξ
T x+

∑

i

(ξi−ξ̄i)zi)+βk . . . −2µ̂TQξ+λT (Aξ−b)

which value is greater or equal to zero iff
[

Q (αk(x+ z) + 2p− 2Qµ̂+ ATλ)/2

. . . −αk ξ̄
T
z+ βk − λTb− r

]

� 0

for some 0 ≤ z ≤ y and λ ≥ 0.
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Distributionally Robust Portfolio Optimization

DRSP reduces to SDP II

When the dust settles down we get:

max.
x,y r ,Q,P,p,s, zk ,λk

r −
(

(1 + γ2)Σ̂− µ̂µ̂T
)

•Q− Σ̂ • P− 2µ̂Tp− γ1s

s.t.

[
P p

pT s

]

� 0 , Q � 0

[

Q (αk(x + zk) + 2p− 2Qµ̂+ ATλ)/2

. . . −αk ξ̄
T
zk + βk − bTλk − r ]

]

� 0 , ∀ k
∑

i

xi + yi ≤ B

0 ≤ zk ≤ y , ∀ k
λk ≥ 0 , ∀ k
x ≥ 0 , y ≥ 0
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Distributionally Robust Portfolio Optimization

Experiments in Portfolio Optimization

30 stocks tracked over years 1992-2007 using Yahoo! Finance

1994 1996 1998 2000 2002 2004 2006
0

20

40

60

80

100

year

st
oc

k 
pr

ic
e

Boeing
Motorola
Dow Chemical Company
Merck & Co., Inc.

How does the robust solution perform compared to stochastic
programming solution?

D = D2(γ) vs. D = {F̂}
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Distributionally Robust Portfolio Optimization

Wealth Evolution for 300 Experiments
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W
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10% and 90% percentiles are indicated periodically.
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Distributionally Robust Portfolio Optimization

Wealth Evolution for 300 Experiments

2001 2002 2003 2004
0.2

0.4

0.6
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DRSP
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2004 2005 2006 2007
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1
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Year

W
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lth

 

 

10% and 90% percentiles are indicated periodically.

79% of time, the DRSP outperformed the stoch. prog. model

67% improvement on average using DRSP with D2(γ)
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Distributionally Robust Fleet Composition
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Distributionally Robust Fleet Composition

Are Airlines Adventurous in their Fleet Acquisition?

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
e.g., passenger demand, fuel prices, etc.
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Distributionally Robust Fleet Composition

Are Airlines Adventurous in their Fleet Acquisition?

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
e.g., passenger demand, fuel prices, etc.

Yet, most airline companies sign these contracts based on a
single scenario of what the future may be.
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Distributionally Robust Fleet Composition

Are Airlines Adventurous in their Fleet Acquisition?

Fleet composition is a difficult decision problem:

Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
e.g., passenger demand, fuel prices, etc.

Yet, most airline companies sign these contracts based on a
single scenario of what the future may be.

Are airlines companies at risk of not being profitable in long
run ?
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Distributionally Robust Fleet Composition

Mathematical Formulation for Fleet Mix Optimization

The fleet composition problem is a stochastic mixed integer LP

maximize
x

E [− oTx
︸︷︷︸

ownership cost

+ h(x, p̃, c̃, L̃)
︸ ︷︷ ︸

future profits

] ,
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Distributionally Robust Fleet Composition

Mathematical Formulation for Fleet Mix Optimization

The fleet composition problem is a stochastic mixed integer LP

maximize
x

E [− oTx
︸︷︷︸

ownership cost

+ h(x, p̃, c̃, L̃)
︸ ︷︷ ︸

future profits

] ,

with h(x, p̃, c̃, L̃) :=

max
z≥0,y≥0,w

∑

k

(
∑

i

flight profit
︷ ︸︸ ︷

p̃ki w
k
i −

rental cost
︷ ︸︸ ︷

c̃k(zk − xk)
+ +

lease revenue
︷ ︸︸ ︷

L̃k(xk − zk)
+ )

s.t. w k
i ∈ {0, 1} , ∀ k , ∀ i &

∑

k

w k
i = 1 , ∀ i } Cover

yk
g∈in(v) +

∑

i∈arr(v)
w k
i = yk

g∈out(v) +
∑

i∈dep(v)
w k
i , ∀ k , ∀ v } Balance

zk =
∑

v∈{v|time(v)=0}
(yk

g∈in(v) +
∑

i∈arr(v)
w k
i ) , ∀k } Count
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Distributionally Robust Fleet Composition

The Robust Mean Value Problem

Theorem

Given any set D(ψ), the solution of

(RMVP) maximize
x∈X

inf
F∈D(ψ)

h(x,EF [ξ])

is optimal with respect to

maximize
x∈X

inf
F∈D(ψ)

EF [h(x, ξ)] .
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Distributionally Robust Fleet Composition

The Robust Mean Value Problem

Theorem

Given any set D(ψ), the solution of

(RMVP) maximize
x∈X

inf
F∈D(ψ)

h(x,EF [ξ])

is optimal with respect to

maximize
x∈X

inf
F∈D(ψ)

EF [h(x, ξ)] .

Proof: Since h(x, ·) is convex, any feasible distribution F ∈ D(ψ)
is more optimistic than the more concentrated distribution
δEF [ξ] ∈ D(ψ):

EF [h(x, ξ)] ≥ h(x,EF [ξ]) = Eδµ [h(x, ξ)]
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Distributionally Robust Fleet Composition

Insights

Resolving the mean value is more important than resolving
the distribution

The robustness of the mean value problem holds for any
two-stage stochastic linear programming problem with
uncertainty in objective and a risk neutral attitude

There is a need for a tool to estimate the value of stochastic
modeling
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Distributionally Robust Fleet Composition

Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights

2 4 types of aircrafts, 240 flights

3 13 types of aircrafts, 535 flights
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Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights

2 4 types of aircrafts, 240 flights

3 13 types of aircrafts, 535 flights

Results (known µ & Σ, unknown F ):

Test Solution time Regret for RMVP Worst-case regret
cases RMVP SP (100 scen.) based on SP for RMVP solution

#1 0.5 s 3 min 0.02% ≤ 6%
#2 1 s 20 min 0.002% ≤ 1%
#3 30 s 6 h 0.003% ≤ 8%
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Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights

2 4 types of aircrafts, 240 flights

3 13 types of aircrafts, 535 flights

Results (known µ & Σ, unknown F ):

Test Solution time Regret for RMVP Worst-case regret
cases RMVP SP (100 scen.) based on SP for RMVP solution

#1 0.5 s 3 min 0.02% ≤ 6%
#2 1 s 20 min 0.002% ≤ 1%
#3 30 s 6 h 0.003% ≤ 8%

Finding:

It would wasteful for these airline companies to invest more
than 8% of profits in development of a stochastic model
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Parcel delivery in Toronto

Divide downtown Toronto region into K subregions, each
serviced by a different vehicle, so that the total workload be
most evenly distributed among the fleet
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Parcel delivery in Toronto

Divide downtown Toronto region into K subregions, each
serviced by a different vehicle, so that the total workload be
most evenly distributed among the fleet
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Partitioning under a Known Demand Distribution

Given a distribution F of demand points, we would like to
partition so that the workload of the busiest driver is as small
as possible

min.
{R1,R2,...,RK}

{

max
i

E[TSP({ξ1, ξ2, ..., ξN} ∩ Ri )]

}

,
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Given a distribution F of demand points, we would like to
partition so that the workload of the busiest driver is as small
as possible

min.
{R1,R2,...,RK}

{

max
i

E[TSP({ξ1, ξ2, ..., ξN} ∩ Ri )]

}

,

When the number of demand points in a region is large,
Beardwood et al. (1959) tells us that

TSP({ξ1, ξ2, ..., ξN} ∩Ri ) = β
√
N

∫∫

Ri

√

f (ξ)dξ + o(
√
N)
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Partitioning under a Known Demand Distribution

Given a distribution F of demand points, we would like to
partition so that the workload of the busiest driver is as small
as possible

min.
{R1,R2,...,RK}

{

max
i

E[TSP({ξ1, ξ2, ..., ξN} ∩ Ri )]

}

,

When the number of demand points in a region is large,
Beardwood et al. (1959) tells us that

TSP({ξ1, ξ2, ..., ξN} ∩Ri ) = β
√
N

∫∫

Ri

√

f (ξ)dξ + o(
√
N)

Hence, Carlsson et al. (2007) suggest partitioning according to

min.
{R1,R2,...,RK}

{

max
i

∫∫

Ri

√

f (ξ)dξ

}

,

What can we do if we only have historical samples ?
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Distributionally Robust Partitioning

Given D2(γ), we partition so that the largest workload over
the worst distribution of demand points is as small as possible

min.
{R1,R2,...,RK}

sup
F∈D2(γ)

{

max
i

∫∫

Ri

√

f (ξ)dξ

}

,
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Distributionally Robust Partitioning

Given D2(γ), we partition so that the largest workload over
the worst distribution of demand points is as small as possible

min.
{R1,R2,...,RK}

sup
F∈D2(γ)

{

max
i

∫∫

Ri

√

f (ξ)dξ

}

,

A side product will be to characterize for any partition what is
a worst-case distribution of demand locations
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Evaluating the Worst-case Performance

For a given partition, one needs to evaluate the worst-case
load for each region i :

max
F∈D2(γ)

∫∫

Ri

√

f (ξ)dξ
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Evaluating the Worst-case Performance

For a given partition, one needs to evaluate the worst-case
load for each region i :

max
F∈D2(γ)

∫∫

Ri

√

f (ξ)dξ

Using duality theory, we can show that it is equivalent to:

min.
r,Q,P,p,t,λ

1/4

∫∫

Ri

1

r + ξT (2p − 2Qµ̂) + ξTQξ
dξ

+r + ((1 + γ2)Σ̂− µ̂µ̂T ) •Q+ Σ̂ • P+ 2µ̂Tp+ γ1s

s.t.

[

P p

pT s

]

� 0

[

Q (2p− 2Qµ̂+ ATλ)/2

. . . r − bTλ

]

� 0 λ ≥ 0 ,

where Aξ ≤ b describes the polygon T .
This problem can be formulated as an SDP after
approximation of the integral by a finite sum.
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Ramsey County Partition for FedEx Deliveries

Assigning each described region to a FedEx vehicle minimizes the
worst-case tour of any one of them in a single day.

Optimal power diagrams based partitions

n=4 n=6
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Robust Partitioning for Stochastic Multi-Vehicle Routing

Distributionally Robust 2-Partitioning

We simulated three partition schemes on a set of randomly
generated parcel delivery problems where the territory needed to be
divided into two regions and the demand is drawn from a mixture
of truncated Gaussian distribution
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Conclusion & Future Work

Conclusion

DRSP with D(ψ), which imposes concentration properties,
can be reformulated as a standard finite dimensional robust
optimization problem

There are cases where the robust mean value problem
generates distributionally robust decisions

DRO approach can easily lead to better decisions (both in
terms of lower risk and higher returns) than an approach
based on inaccurate stochastic model

Some tools can help estimate how much identifying the true
distribution is worth
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Conclusion & Future Work

Future Work

Can a DRSP that also accounts for higher order moments be
made tractable (polynomial optimization)? Would it help?
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Future Work

Can a DRSP that also accounts for higher order moments be
made tractable (polynomial optimization)? Would it help?

How to deal with ambiguity about one’s risk attitude ?

maximize
t,x∈X

t

s.t. E[u(h(x, ξ))] ≥ u(t), ∀ u ∈ U

where U is the set of all risk averse utility functions that are
coherent with a finite set of known preferences
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Future Work

Can a DRSP that also accounts for higher order moments be
made tractable (polynomial optimization)? Would it help?

How to deal with ambiguity about one’s risk attitude ?

maximize
t,x∈X

t

s.t. E[u(h(x, ξ))] ≥ u(t), ∀ u ∈ U

where U is the set of all risk averse utility functions that are
coherent with a finite set of known preferences

Can lesson’s learned from DRO be usefull for multi-objective
problems ?

42 E. Delage A Class of Uncertainty Sets for DRO



Conclusion & Future Work

Bibliography

Armbruster, B., E. Delage. 2011. Decision making under uncertainty
when preference information is incomplete. Working paper.

Bertsimas, D., X. V. Doan, K. Natarajan, C. P. Teo. 2010. Models for
minimax stochastic linear optimization problems with risk aversion.
Mathematics of Operations Research 35(3) 580–602.

Carlsson, J. G., E. Delage. 2011. Robust partitioning for stochastic
multi-vehicle routing. Working paper.

Delage, E., S. Arroyo, Y. Ye. 2011. The value of stochastic modeling in
two-stage stochastic programs with cost uncertainty. Working
paper.

Delage, E., Y. Ye. 2010. Distributionally robust optimization under
moment uncertainty with application to data-driven problems.
Operations Research 58(3) 595–612.

Natarajan, K., M. Sim, J. Uichanco. 2010. Tractable Robust Expected
Utility and Risk Models for Portfolio Optimization. Mathematical

Finance 20(4) 695–731.

43 E. Delage A Class of Uncertainty Sets for DRO



Conclusion & Future Work

Questions & Comments ...

... Thank you!
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