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Parameter Uncertainty in Optimization

Consider an optimization problem:

minimize
x∈X

h(x, ξ)

h(·, ·) is a profit function

x ∈ R
n is a vector of decision variables

ξ ∈ R
m is a vector of parameters

Often in practice, some parameters cannot be pre-determined :

Tomorrow’s value of a stock

Next year’s demand for a flight
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Limits of Stochastic Programming

Given that ξ ∼ G , one option is to consider a stochastic program :

(SP) minimize
x∈X

E G [h(x, ξ)]

Difficulty:

Developing a reliable probabilistic model is hard !

Solution is sensitive to the choice of probabilistic model
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Distributionally Robust Optimization

Use information about the distribution to define a set D, such that
F ∈ D, then consider the distributionally robust stochastic
program:

(DRSP) minimize
x∈X

max
F∈D

E F [h(x, ξ)]

The conflict:

The set D should capture available information for F

There must exist a tractable algorithm that finds a solution
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The Spectrum of Known Computational Difficulties

Given that the objective function is convex in x and “piecewise
concave” in ξ, there are known tractable algorithms for:

D fixes the support and mean [Dupacova (1987)]

D fixes the mean and covariance matrix [Popescu (2007), Bertsimas

et al. (2009), Natarajan et al. (2008), Delage et al. (2009)]

D fixes the support and mean, and imposes “upper-bound” on
covariance matrix [Delage et al. (2009)]

While the following are intractable forms [Bertsimas et al. (2005)] :

D fixes the support, the mean and covariance matrix

D fixes the d -th first moments with d ≥ 4
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Weak Conditions on Objective Function

Let h(x, ξ) = maxk∈{1,2,...,K} hk(x, ξ) be such that for all k :

hk(x, ξ) is convex in x

hk(x, ξ) is concave in ξ

hk(x, ξ)’s value and “sub-gradients” are easily obtained
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Examples of Objectives

A two-stage stochastic linear program with cost uncertainty

minimize
x

max
F∈D

E F [ min
y∈Y(x)

cTx+ ξTy]

An expected utility maximization problem with piecewise
linear concave utility

maximize
x

min
F∈D

E F [u(−h(x, ξ)))]

An optimized certainty equivalent with piecewise linear
concave utility [Bertsimas et al. (2009)]

maximize
x,t

min
F∈D

t + E F [u(−h(x, ξ)−t)]
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Weak Conditions on D

Let DΥ be a set of the form

DΥ(S, ψ(·),b,K) =

{
F ∈ M

∣∣∣∣ PF (ξ ∈ S) = 1
zT (b− E F [ψ(ξ)]) ≥ 0 , ∀ z ∈ K

}

such that:

1 The set S is closed, convex, and bounded

2 The set K ⊆ R
p is a convex cone

3 ∀ z ∈ K, the function g(z, ξ) = zTψ(ξ) is convex in ξ
4 One can in polynomial time :

evaluate the function g(z, ξ)
find a sub-gradient of g(z, ξ) in ξ
call a separation oracle for z ∈ K
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Existence of Efficient Algorithm

Theorem

If h(x, ξ) and DΥ(S, ψ(·),b,K) satisfy our conditions, the
distributionally robust problem:

minimize
x∈X

max
F∈DΥ(S,ψ(·),b,K)

E F [h(x, ξ)]

can be solved in polynomial time using a cutting plane algorithm.
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Summary of Proof I: Verifying that DΥ is Non-Empty

One finds a distribution that lies in the strict interior of DΥ by
verifying that t∗ > 0 for the problem:

maximize
F∈M,t∈R

t

subject to zT(b− E F [ψ(ξ)] − tr) ≥ 0 , ∀ z ∈ K
PF (ξ ∈ S) = 1 ,

where r is any non-zero vector lying in the strict interior of K∗.
By Jensen’s inequality, the feasibility problem is equivalent to
the semi-infinite convex problem:

maximize
μ∈S,t∈R

t

subject to zT (b− ψ(μ) − tr) ≥ 0 , ∀ z ∈ K ,

which can be solved using the ellipsoid method.
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Summary of Proof II: Solving the DRSP

Given that ∃F ∈ DΥ that strictly satisfies all moment
constraints, then one can solve the equivalent problem:

minimize
x, z

bTz

subject to h(x, ξ) − zTψ(ξ) ≤ 0 , ∀ ξ ∈ S
z ∈ K

After verifying z ∈ K, each step of the ellipsoid method
involves solving the convex problem :

maximize
ξ∈S

max
k∈{1,2,...,K}

hk(x, ξ) − zTψ(ξ)
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An Alternative to Fixing d First Moments

No tractable algorithms exists for the DRSP with

D(b) =
{
F
∣∣∣E F [ψ

d (ξ)] = b
}
=

{
F
∣∣∣zTE F [ψ

d (ξ)] = zTb , ∀ z
}
,

where d ≥ 0 and ψd
γ (ξ) =

∏n
i=1 ξ

γi
i , ∀ γ ∈ Z

m ,
∑n

i=1 γi ≤ d

For cutting plane algorithm to work we need that :

DΥ ⊇
{
F
∣∣∣zTE F [ψ

d (ξ)] ≤ zTb , ∀ z ∈ Kcvx

}
⊇ D(b) ,

where Kcvx =
{
z
∣∣zTψd (ξ) is convex polynomial

}
Yet, verifying that z ∈ Kcvx is not easy:

z ∈ Kcvx ⇔
∑
i ,j

ζiζj
∂2zTψd (ξ)

∂ξi∂ξj
≥ 0 , ∀ ξ, ζ
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Designing DΥ using Sum of Squares Theory (c.f. Rajwade
(1993))

We propose DΥ(R
m, ψd (·),b,Ksos) where Ksos ⊆ Kcvx is⎧⎨

⎩z

∣∣∣∣∣∣∃Q � 0, ∀ ξ, ζ ∈ R
m,

∑
i ,j

ζiζj
∂2zTψd (ξ)

∂ξi∂ξj
= ‖Q1/2(ζ ⊗ ψd/2(ξ))‖2

⎫⎬
⎭

Membership of Ksos can be verified with an LMI:

z ∈ Ksos ⇔ AQQ = Azz for some Q � 0

If m = 1 or d ≤ 2, then Ksos = Kcvx

In general, F ∗ is more concentrated than G ∈ D(b) since ∀μ0
∃z ∈ Ksos , ‖ξ − μ0‖2 = zTψd (ξ)

⇒ E F∗ [‖ξ − μ0‖2] ≤ E G [‖ξ − μ0‖2] , ∀G ∈ D(b)
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Experiments with Portfolio Optimization

Consider the portfolio optimization model:

maximize
x∈X

min
F∈DΥ(Rm ,ψd (·),b,Ksos)

E F [min
k
αkξ

Tx+ βk ]

There is an SDP, solved in O(K 1.5n3.25d ), which maximizes a
lower bound for this problem (again exploiting SOS theory)

zTψd (ξ)− h(x, ξ) ≥ 0 , ∀ ξ
⇔ zTψd (ξ) + αkξ

Tx+ βk ≥ 0 , ∀ ξ , ∀ k
⇐ ∃Qk � 0, zTψd (ξ) + αkξ

Tx+ βk = ‖Q1/2
k ψd/2(ξ)‖2, ∀ ξ, ∀ k

⇔ ∃Qk � 0 , AQQk = Azz+ αkAxx+ βkAβ , ∀ k
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Experiments with Portfolio Optimization (II)

Consider the portfolio optimization model:

maximize
x∈X

min
F∈DΥ(Rm ,ψd (·),b,Ksos)

E F [min
k
αkξ

Tx+ βk ]

Empirical evidence indicates that if G is known, this DRSP
approximates closely DRSP with D = {G} as d increases

Method CPU G is Discrete (10’000 points)
Time Obj. Est. Error Rel. Perf.
sec. μ σ μ

DΥ(d = 2) 0.6 -3000% 1500% -0.06%
DΥ(d = 4) 3.3 -6% 4% -0.006%
DΥ(d = 6) 24 -4% 4% -0.006%
Stoch. Prog. 8 0% 0% 0%
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Discussion & Conclusion

There is a rich family of sets DΥ that makes DRSP tractable

The set DΥ(S, ψd (·),b,Ksos) allows to account for
information about higher moments of G

We almost have in hand a complete framework for
optimization under uncertainty:

1 Identify the right objective given your risk attitude
2 Gather information about the distribution of ξ
3 Use info to construct an uncertainty set: E G [ψ

d (ξ)] ∈ B
4 Solve the DRSP :

minimize
x∈X

max
b∈B

max
F∈DΥ(S,ψd (·),b,Ksos)

E F [h(x, ξ)]

5 As more information is gathered, B → {E G [ψ
d(ξ)]}, thus

F ∗ → G approximately given enough computational power
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Thank You!
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